Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk giải câu a thui nha
để \(\frac{6n-1}{3n+2}\)là số nguyên thì:
(6n-1) sẽ phải chia hết cho(3n+2)
mà (3n+2) chja hết cho (3n+2)
=> 2(3n+2) cx sẽ chia hết cho (3n+2)
<=> (6n+4) chia hết cho (3n+2)
mà (6n-1) chia hết cho (3n+2)
=> [(6n+4)-(6n-1)] chja hết cho (3n+2)
(6n+4-6n+1) chja hết cho 3n+2
5 chia hết cho3n+2
=> 3n+2 \(\in\){1,5,-1,-5}
ta có bảng
3n+2 | 1 | 5 | -1 | -5 |
3n | 3 | 7 | 1 | -3 |
n | 1 | -1 |
vậy....
bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
cho phân số A=n+1/n-2
tìm n thuộc z để A thuộc giá trị nguyên N
tìm n thuộc z để A có giá trị lớn nhất
a, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{3}{n-2}\)
\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n - 2 | 1 | -1 | 3 | -3 |
n | 3 | 1 | 5 | -1 |
b, Ta có : \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{3}{n-2}+1\ge1\)
Dấu ''='' xảy ra <=> n - 2 = 1 <=> n = 3
Vậy GTLN A là 1 khi n = 3
a) \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)
Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\Rightarrow\frac{6}{5n-3}\in Z\Rightarrow5n-3\in U\left(6\right)\)
Ta có bảng sau:
5n - 3 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n | -0,6 | 0 | 0,2 | 0,4 | 0,8 | 1 | 1,2 | 1,8 |
Mà n thuộc Z => n = { 0 ; 1 }
b) Để A lớn nhất thì \(2+\frac{6}{5n-3}\)có giá trị lớn nhất => \(\frac{6}{5n-3}\)lớn nhất
=> 5n - 3 nguyên dương nhỏ nhất ; 5n - 3 thuộc ước của 6 và n thuộc Z
=> 5n - 3 = 2 => x = 1 và \(\frac{6}{5n-3}=\frac{6}{2}=3\)
Thay \(3=\frac{6}{5n-3}\)vào \(A=2+\frac{6}{5n-3}\)ta có:
\(A=2+3=5\)
Vậy giá trị lớn nhất của A là 5 khi x = 1
a, Ta có : \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}\)
\(=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)
\(=2+\frac{6}{5n-3}\)
Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\)
\(\Rightarrow\frac{6}{5n-3}\in Z\)
\(\Rightarrow6\)chia hết cho\(5n-3\)
\(\Rightarrow5n-3\inƯ\left(6\right)\)
Ta có bảng sau :
5n-3 | 1 | -1 | 2 | -2 | 3 | -3 |
5n | 4 | 2 | 5 | 1 | 6 | 0 |
n | 0,8 | 0,4 | 1 | 0,2 | 1,2 | 0 |
Vì \(n\in Z\)=> \(n\in\left\{0;1\right\}\)
ta có \(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\)
Để A nguyên thì n-2 là ước của 3 hay
\(n-2\in\left\{\pm1,\pm3\right\}\Leftrightarrow n\in\left\{-1,1,3,5\right\}\)
Để A có giá trị lớn nhất thì \(\frac{3}{n-2}\) đạt giá trị lớn nhất.
khi \(n-2>0\) và đạt giá trị nhỏ nhất
hay n=3.