Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
ĐKXĐ: x>=3
Để \(6\sqrt{x+1}⋮2\sqrt{x-3}\) thì \(x+1⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;2;-2;4\right\}\)
hay \(x\in\left\{4;2;5;1;7\right\}\)
=>\(x\in\left\{4;5;7\right\}\)
b: Để A là số nguyên thì \(-2x-6+7⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{-2;-4;4;-10\right\}\)
a)2(x+y)=2(z+x)
=>\(x+y=z+x\)
=>y=z
=>\(\frac{y-z}{5}=\frac{0}{5}=0\)
5(y+z)=2(z+x)
5y+5z=2z+2x
mà y=z(cmt)
nên 5y+5y-2y=2x
8y=2x
x=4y
=>\(\frac{x-y}{4}=\frac{4y-y}{4}=\frac{3y}{4}\)
=>ko thỏa mãn đề bài
a ) Cho 2( x + y ) = 5( y + z ) = 3( z + x ) thì x−y4=y−z5
Theo đề bài ra ta có: \(2\left(x+y\right)=5\left(y+z\right)\Rightarrow\frac{x+y}{5}=\frac{y+z}{2}\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}\)
\(5\left(y+z\right)=3\left(z+x\right)\Rightarrow\frac{z+x}{5}=\frac{y+z}{3}\Rightarrow\frac{z+x}{10}=\frac{y+z}{6}\)
\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}=\frac{x+y-y-z-z-x}{15-6-10}=\frac{0}{-1}=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+y=0\\y+z=0\\z+x=0\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=0\\y=0\\z=0\end{array}\right.\)
\(\Rightarrow5x-5y=4y-4z\)(Do x,y,z=0)
\(\Rightarrow5\left(x-y\right)=4\left(y-z\right)\)
\(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\)
a/ Tự thay vào tính
b/ Ta có: \(\dfrac{\sqrt{x}-5}{\sqrt{x}+3}=\dfrac{\sqrt{x}+3-8}{\sqrt{x}+3}=1+\dfrac{-8}{\sqrt{x}+3}=-1\)
\(\Rightarrow\dfrac{-8}{\sqrt{x}+3}=-1-1=-2\)
\(\Rightarrow\sqrt{x}+3=4\Rightarrow\sqrt{x}=1\Rightarrow x=1\)
c/ Ta có: \(\dfrac{\sqrt{x}-5}{\sqrt{x}+3}=1+\dfrac{-8}{\sqrt{x+3}}\) (ý b đã tính)
Để A \(\in Z\Leftrightarrow1+\dfrac{-8}{\sqrt{x}+3}\in Z\Leftrightarrow\dfrac{-8}{\sqrt{x}+3}\in Z\)
\(\Leftrightarrow-8⋮\sqrt{x}+3\Leftrightarrow\sqrt{x}+3\inƯ\left(-8\right)\)
Có: \(Ư\left(-8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Ta có bảng sau:
\(\sqrt{x}+3\) | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
\(\sqrt{x}\) | -2(loại) | -4(loại) | -1(loại) | -5(loại) | 1 | -7(loại) | 5 | -11(loại) |
\(x\) | loại | loại | loại | loại | 1 | loại | 25 | loại |
Vậy \(x\in\left\{1;25\right\}\) thì \(A\in Z\)
\(a,x< 50\Leftrightarrow\sqrt{x}-1< 5\sqrt{2}-1\\ M=\dfrac{\sqrt{x}-1}{2}\in Z\\ \Leftrightarrow\sqrt{x}-1\in B\left(2\right)=\left\{0;2;4;6\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{1;3;5;7\right\}\\ \Leftrightarrow x\in\left\{1;9;25;49\right\}\\ b,\Leftrightarrow\sqrt{x}-5\inƯ\left(9\right)=\left\{-3;-1;1;3;9\right\}\left(\sqrt{x}-5>-5\right)\\ \Leftrightarrow\sqrt{x}\in\left\{2;4;6;8;14\right\}\\ \Leftrightarrow x\in\left\{4;16;36;64;196\right\}\)