\(M=\dfrac{42-x}{x-15}\) . Tìm số nguyên x để m đạt giá trị nhỏ nhất . 

b)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Bài 1:

$M=\frac{27}{x-15}-1$

Để $M$ min thì $\frac{27}{x-15}$ min. 

Để $\frac{27}{x-15}$ min thì $x-15$ là số âm lớn nhất 

$\Rightarrow x$ là số nguyên lớn nhất nhỏ hơn 15

$\Rightarrow x=14$

Khi đó: $M_{\min}=\frac{42-14}{14-15}=-28$

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Bài 2:

\(\left(\dfrac{1}{2}\right)^x+\left(\dfrac{1}{2}\right)^{x-4}=17\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}\left[\left(\dfrac{1}{2}\right)^4+1\right]=17\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}.\dfrac{17}{16}=17\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}=16=\left(\dfrac{1}{2}\right)^{-4}\)

$\Rightarrow x-4=-4\Leftrightarrow x=0$

AH
Akai Haruma
Giáo viên
29 tháng 8 2018

Bài 1:

a)
\(|x+\frac{4}{15}|-|-3,75|=-|-2,15|\)

\(\Leftrightarrow |x+\frac{4}{15}|-3,75=-2,15\)

\(\Leftrightarrow |x+\frac{4}{15}|=-2,15+3,75=\frac{8}{5}\)

\(\Rightarrow \left[\begin{matrix} x+\frac{4}{15}=\frac{8}{5}\\ x+\frac{4}{15}=-\frac{8}{5}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{4}{3}\\ x=\frac{-28}{15}\end{matrix}\right.\)

b )

\(|\frac{5}{3}x|=|-\frac{1}{6}|=\frac{1}{6}\)

\(\Rightarrow \left[\begin{matrix} \frac{5}{3}x=\frac{1}{6}\\ \frac{5}{3}x=-\frac{1}{6}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{1}{10}\\ x=-\frac{1}{10}\end{matrix}\right.\)

c)

\(|\frac{3}{4}x-\frac{3}{4}|-\frac{3}{4}=|-\frac{3}{4}|=\frac{3}{4}\)

\(\Leftrightarrow |\frac{3}{4}x-\frac{3}{4}|=\frac{3}{2}\)

\(\Rightarrow \left[\begin{matrix} \frac{3}{4}x-\frac{3}{4}=\frac{3}{2}\\ \frac{3}{4}x-\frac{3}{4}=-\frac{3}{2}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=3\\ x=-1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
29 tháng 8 2018

Bài 3:

a) Ta thấy:

\(|x+\frac{15}{19}|\geq 0, \forall x\Rightarrow A\ge 0-1=-1\)

Vậy GTNN của $A$ là $-1$ khi \(x+\frac{15}{19}=0\Leftrightarrow x=-\frac{15}{19}\)

b)Vì \(|x-\frac{4}{7}|\geq 0, \forall x\Rightarrow B\geq \frac{1}{2}+0=\frac{1}{2}\)

Vậy GTNN của $B$ là $\frac{1}{2}$ khi \(x-\frac{4}{7}=0\Leftrightarrow x=\frac{4}{7}\)

4 tháng 7 2018

Bài 1:

\(\left\{{}\begin{matrix}\left|x-\dfrac{1}{2}\right|\ge0\forall x\\\left|x+y\right|\ge0\forall x,y\end{matrix}\right.\Rightarrow\left|x-\dfrac{1}{2}\right|+\left|x+y\right|\ge0\forall x,y\)

Vì vậy, để tìm được x, y thỏa mãn đề bài thì \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\x+y=0\end{matrix}\right.\)

Từ đó, ta tìm được \(x=\dfrac{1}{2}\)\(y=-\dfrac{1}{2}\)

Bài 2:

\(A=\left|x-\dfrac{3}{4}\right|\)

Ta thấy \(\left|x-\dfrac{3}{4}\right|\ge0\forall x\Rightarrow A\ge0\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-\dfrac{3}{4}\right|=0\Leftrightarrow x-\dfrac{3}{4}=0\Leftrightarrow x=\dfrac{3}{4}\)

Vậy GTNN của A là 0 khi \(x=\dfrac{3}{4}\)

\(B=\left|x+\dfrac{2}{3}\right|+2\)

\(\left|x+\dfrac{2}{3}\right|\ge0\forall x\) nên \(\left|x+\dfrac{2}{3}\right|+2\ge2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x+\dfrac{2}{3}\right|=0\Leftrightarrow x+\dfrac{2}{3}=0\Leftrightarrow x=-\dfrac{2}{3}\)

Vậy GTNN của B là 2 khi \(x=-\dfrac{2}{3}\)

1) Tính \(A=\dfrac{1}{13}+\dfrac{3}{13.23}+\dfrac{3}{23.33}+...+\dfrac{3}{2003.2013}\) \(B=\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)....\left(\dfrac{1}{2018}-1\right)\) 2) Tìm x biết: a) \(x^2-2x-15=0\) b) \(\dfrac{3}{\left(x+2\right).\left(x+5\right)}+\dfrac{5}{\left(x+5\right).\left(x+10\right)}+\dfrac{7}{\left(x+10\right).\left(x+17\right)}=\dfrac{x+1}{\left(x+2\right).\left(x+17\right)}\) 3) Cho \(\dfrac{a}{b}=\dfrac{d}{c}\) . Chứng...
Đọc tiếp

1) Tính

\(A=\dfrac{1}{13}+\dfrac{3}{13.23}+\dfrac{3}{23.33}+...+\dfrac{3}{2003.2013}\)

\(B=\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)....\left(\dfrac{1}{2018}-1\right)\)

2) Tìm x biết:

a) \(x^2-2x-15=0\)

b) \(\dfrac{3}{\left(x+2\right).\left(x+5\right)}+\dfrac{5}{\left(x+5\right).\left(x+10\right)}+\dfrac{7}{\left(x+10\right).\left(x+17\right)}=\dfrac{x+1}{\left(x+2\right).\left(x+17\right)}\)

3) Cho \(\dfrac{a}{b}=\dfrac{d}{c}\) . Chứng minh: \(\dfrac{a^2+d^2}{b^2+c^2}=\dfrac{ad}{bc}\)

4) Cho \(f\left(x\right)=x^{100}-x^{99}+...+x^2-x+1\)

\(g\left(x\right)=-x^{101}+x^{100}-x^{99}+...+x^2-x+1\)

Tính giá trị của hiệu \(f\left(x\right)-g\left(x\right)\) tại x=0,1

5) Cho tam giác ABC có \(\widehat{A}=\ge90\) ; \(M\in AB,N\in AC\)

Chứng minh: BC > MN

6) Cho tam giác ABC, M là trung điểm BC, biết \(\widehat{BAM}>\widehat{CAM}\) . So sánh B và C

2
21 tháng 3 2018

1)\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2017}{2018}\)

\(B=\dfrac{1}{2018}\)

2)a)\(x^2-2x-15=0\)

\(\Leftrightarrow x^2-2x+1-16=0\)

\(\Leftrightarrow\left(x-1\right)^2-16=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)

3)\(\dfrac{a}{b}=\dfrac{d}{c}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a}{b}\cdot\dfrac{d}{c}=\dfrac{ad}{bc}\)

Lại có:\(\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a^2+d^2}{b^2+c^2}\)

\(\Rightarrow\dfrac{a^2+d^2}{b^2+c^2}=\dfrac{ad}{bc}\)

4)Ta có:\(g\left(x\right)=-x^{101}+x^{100}-x^{99}+...+x^2-x+1\)

\(g\left(x\right)=-x^{101}+\left(x^{100}-x^{99}+...+x^2-x+1\right)\)

\(g\left(x\right)=-x^{101}+f\left(x\right)\)

\(\Rightarrow f\left(x\right)-g\left(x\right)=f\left(x\right)+x^{101}-f\left(x\right)=x^{101}\)

Tại x=0 thì f(x)-g(x)=0

Tại x=1 thì f(x)-g(x)=1

24 tháng 3 2018

CHu làm cô liễu ko lo làm Mai báo cô

15 tháng 10 2018

\(1,\)

\(a,\dfrac{11}{125}-\dfrac{17}{18}-\dfrac{5}{7}+\dfrac{4}{9}+\dfrac{17}{14}\)

\(=\dfrac{11}{125}+\left(\dfrac{4}{9}-\dfrac{17}{18}\right)+\left(\dfrac{17}{14}-\dfrac{5}{7}\right)\)

\(=\dfrac{11}{125}+\left(\dfrac{-1}{2}\right)+\dfrac{1}{2}\)

\(=\dfrac{11}{125}\)

\(b,-1\dfrac{5}{7}.15+\dfrac{2}{7}.\left(-15\right)+\left(-105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)

\(=\dfrac{-12}{7}.15+\dfrac{2}{7}.\left(-15\right)+\left(105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)

\(=-15.\left[\dfrac{12}{7}+\dfrac{2}{7}+\left(-5\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\right]\)

\(=-15.\left[2+\left(-5\right).\dfrac{1}{105}\right]\)

\(=-15.\left(2-\dfrac{1}{21}\right)\)

\(=-15.\dfrac{41}{21}=\dfrac{-615}{21}\)

\(2,\)

\(a,\dfrac{11}{13}-\left(\dfrac{5}{42}-x\right)=-\left(\dfrac{15}{28}-\dfrac{11}{13}\right)\)

\(\Leftrightarrow\dfrac{11}{13}-\dfrac{5}{42}+x=\dfrac{-15}{28}+\dfrac{11}{13}\)

\(\Leftrightarrow x=\dfrac{-15}{28}+\dfrac{11}{13}-\dfrac{11}{13}+\dfrac{5}{42}\)

\(\Leftrightarrow x=\left(\dfrac{11}{13}-\dfrac{11}{13}\right)+\left(\dfrac{5}{42}+\dfrac{-15}{28}\right)\)

\(\Leftrightarrow x=\dfrac{5}{12}\)

Vậy \(x=\dfrac{5}{12}\)

\(b,\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)

\(\Leftrightarrow\left|x+\dfrac{4}{15}\right|-3,75=-2,15\)

\(\Leftrightarrow\left|x+\dfrac{4}{15}\right|=-2,15+3,75=1,6=\dfrac{16}{10}=\dfrac{8}{5}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{4}{15}=\dfrac{8}{5}\\x+\dfrac{4}{15}=\dfrac{-8}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{5}-\dfrac{4}{15}=\dfrac{4}{3}\\x=\dfrac{-8}{5}-\dfrac{4}{15}=\dfrac{-28}{15}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{4}{3};\dfrac{-28}{15}\right\}\)

\(c,7^{x+2}+2.7^{x-1}=345\)

\(\Leftrightarrow7^{x-1}.\left(7^3+2\right)=345\)

\(\Leftrightarrow7^{x-1}.\left(343+2\right)=345\)

\(\Leftrightarrow7^{x-1}.345=345\)

\(\Leftrightarrow7^{x-1}=345:345=1\)

\(\Leftrightarrow x-1=0\)

\(x=0+1=1\)

Vậy \(x=1\)

AH
Akai Haruma
Giáo viên
29 tháng 8 2018

Lời giải:

Trị tuyệt đối của một số luôn không âm nên :

\(M=|x+\frac{15}{19}|\geq 0\)

Vậy GTNN của $M$ là $0$ khi \(|x+\frac{15}{19}|=0\Leftrightarrow x=\frac{-15}{19}\)

---------

\(|x-\frac{4}{7}|\geq 0\Rightarrow Q=|x-\frac{4}{7}|-\frac{1}{2}\geq 0-\frac{1}{2}=-\frac{1}{2}\)

Vậy GTNN của $Q$ là \(-\frac{1}{2}\) khi \(|x-\frac{4}{7}|=0\Leftrightarrow x=\frac{4}{7}\)

------------

Nếu \(x> 5\) thì \(|x-1|=x-1; |x-5|=x-5\)

\(\Rightarrow Q=x-1+x-5=2x-6> 2.5-6=4\)

Nếu \(x<1 \Rightarrow |x-1|=1-x; |x-5|=5-x\)

\(\Rightarrow Q=1-x+5-x=6-2x>6-2.1=4\)

Nếu \(1\leq x\leq 5\Rightarrow |x-1|=x-1; |x-5|=5-x\)

\(\Rightarrow Q=x-1+5-x=4\)

Vậy GTNN của $Q$ là $4$ khi \(1\leq x\leq 5\)

29 tháng 8 2018

\(M=\left|x+\dfrac{15}{19}\right|\)

Vì giá trị tuyệt đối của mọi số luôn luôn lớn hơn hoặc bằng 0

\(\Rightarrow M=\left|x+\dfrac{15}{19}\right|=0\)

\(\Rightarrow x+\dfrac{15}{19}=0\Rightarrow x=-\dfrac{15}{19}\)

\(Q=\left|x-\dfrac{4}{7}\right|-\dfrac{1}{2}\)

\(\left|x-\dfrac{4}{7}\right|\ge0\Rightarrow x-\dfrac{4}{7}=0\)

\(\Rightarrow x=-\dfrac{4}{7}\)

\(S=\left|x-1\right|+\left|x-5\right|\)

20 tháng 7 2017

1. Ta có: \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=x+y+z\) ( vì \(a+b+c=1\) )

Do đó \(\left(x+y+z\right)^2=\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)( vì \(a^2+b^2+c^2=1\) ).

Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^2\)

20 tháng 7 2017

2. Đặt \(x^2=a\left(a\ge0\right),y^2=b\left(b\ge0\right)\)

Ta có: \(\dfrac{a+b}{10}=\dfrac{a-2b}{7}\)\(a^2b^2=81\)

\(\dfrac{a+b}{10}=\dfrac{a-2b}{7}=\dfrac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\dfrac{3b}{3}=b\) __(1)__

\(\dfrac{a+b}{10}=\dfrac{a-2b}{7}=\dfrac{2a+2b}{20}=\dfrac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\dfrac{3a}{27}=\dfrac{a}{9}\)__(2)__

Từ (1) và (2) suy ra \(\dfrac{a}{9}=b\Rightarrow a=9b\)

Do \(a^2b^2=81\) nên \(\left(9b\right)^2.b^2=81\Rightarrow81b^4=81\Rightarrow b^4=1\Rightarrow b=1\) ( vì \(b\ge0\) )

Suy ra: a = 9.1 = 9

Ta có: \(x^2=9\)\(y^2=1\). Suy ra: \(x=\pm3,y=\pm1\)

29 tháng 8 2017

a ) \(A=0,6+\left|\dfrac{1}{2}-x\right|\)

Ta có : \(\left|\dfrac{1}{2}-x\right|\ge0\)

\(\Leftrightarrow0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\)

Vậy GTNN là 0,6 khi \(x=\dfrac{1}{2}.\)

- Đề ghi ko hiểu ?

b ) \(\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)

Ta có : \(\left|2x+\dfrac{2}{3}\right|\ge0\)

\(\Leftrightarrow\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)

Vậy GTNN là \(\dfrac{2}{3}\Leftrightarrow x=-\dfrac{1}{3}\)

29 tháng 8 2017

\(A=0,6+\left|\dfrac{1}{2}-x\right|\)

\(\left|\dfrac{1}{2}-x\right|\ge0\forall x\in R\)

\(A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\)

Dấu "=" xảy ra khi:

\(\left|\dfrac{1}{2}-x\right|=0\Rightarrow x=\dfrac{1}{2}\)

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)

\(\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\)

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)

Dấu "=" xảy ra khi:

\(\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow2x=-\dfrac{2}{3}\Leftrightarrow x=-\dfrac{1}{3}\)

a) Ta có:

\(\frac{x+11}{12}+\frac{x+11}{13}+\frac{x+11}{14}=\frac{x+11}{15}+\frac{x+11}{16}\)

\(\Rightarrow\left(x+11\right)\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)=\left(x+11\right)\left(\frac{1}{15}+\frac{1}{16}\right)\)

Mà ta có:

\(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\ne\frac{1}{15}+\frac{1}{16}\)

\(\Rightarrow x+11=0\Rightarrow x=-11\)

Ta có:

\(A=1+x+x^2+x^3+...+x^{100}\)

Đặt \(B=x+x^2+x^3+...+x^{100}\)

\(\Rightarrow B=\left(-11\right)+\left(-11\right)^2+\left(-11\right)^3+...+\left(-11\right)^{100}\)

\(\Rightarrow-11B=\left(-11\right)^2+\left(-11\right)^3+\left(-11\right)^4+...+\left(-11\right)^{101}\)

\(\Rightarrow-11B-B=\left(-11\right)^{101}-\left(-11\right)\)

\(\Rightarrow-12B=\left(-11\right)^{101}+11\Rightarrow B=\frac{\left(-11\right)^{101}+11}{-12}\)

\(\Rightarrow A=1+B=\frac{\left(-11\right)^{101}+11}{-12}+1\)