K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a)

i) Vì \(OA' = 3OA \Rightarrow \frac{{OA}}{{OA'}} = \frac{1}{3}\);\(OB' = 3OB \Rightarrow \frac{{OB}}{{OB'}} = \frac{1}{3}\).

Xét tam giác \(OA'B'\) có:

\(\frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{1}{3}\)

Do đó, \(A'B'//AB\) (định lí Thales đảo)

ii) Vì \(A'B'//AB \Rightarrow \frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{{AB}}{{A'B'}} = \frac{1}{3}\) (hệ quả của định lí Thales)

Do đó, \(\frac{{A'B'}}{{AB}} = \frac{3}{1} = 3\).

b)

i)

- Vì \(OA' = 3OA \Rightarrow \frac{{OA}}{{OA'}} = \frac{1}{3}\);\(OB' = 3OB \Rightarrow \frac{{OB}}{{OB'}} = \frac{1}{3}\).

Xét tam giác \(OA'B'\) có:

\(\frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{1}{3}\)

Do đó, \(A'B'//AB\) (định lí Thales đảo)

Vì \(A'B'//AB \Rightarrow \frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{{AB}}{{A'B'}} = \frac{1}{3}\) (hệ quả của định lí Thales)

Do đó, \(\frac{{A'B'}}{{AB}} = \frac{3}{1} = 3\).

- Vì \(OA' = 3OA \Rightarrow \frac{{OA}}{{OA'}} = \frac{1}{3}\);\(OC' = 3OC \Rightarrow \frac{{OC}}{{OC'}} = \frac{1}{3}\).

Xét tam giác \(OA'C'\) có:

\(\frac{{OA}}{{OA'}} = \frac{{OC}}{{OC'}} = \frac{1}{3}\)

Do đó, \(A'C'//AC\) (định lí Thales đảo)

Vì \(A'C'//AC \Rightarrow \frac{{OA}}{{OA'}} = \frac{{OC}}{{OC'}} = \frac{{AC}}{{A'C'}} = \frac{1}{3}\) (hệ quả của định lí Thales)

Do đó, \(\frac{{A'C'}}{{AC}} = \frac{3}{1} = 3\).

- Vì \(OB' = 3OB \Rightarrow \frac{{OB}}{{OB'}} = \frac{1}{3}\);\(OC' = 3OC \Rightarrow \frac{{OC}}{{OC'}} = \frac{1}{3}\).

Xét tam giác \(OB'C'\) có:

\(\frac{{OB}}{{OB'}} = \frac{{OC}}{{OC'}} = \frac{1}{3}\)

Do đó, \(B'C'//BC\) (định lí Thales đảo)

Vì \(B'C'//BC \Rightarrow \frac{{OB}}{{OB'}} = \frac{{OC}}{{OC'}} = \frac{{BC}}{{B'C'}} = \frac{1}{3}\) (hệ quả của định lí Thales)

Do đó, \(\frac{{B'C'}}{{BC}} = \frac{3}{1} = 3\).

Do đó, \(\frac{{B'C'}}{{BC}} = \frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}}\)

ii) Xét tam giác \(A'B'C'\) và tam giác \(ABC\) ta có:

\(\frac{{B'C'}}{{BC}} = \frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}}\) (chứng minh trên)

Do đó, tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\).

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

- Có \(\frac{{OA'}}{{OA}} = \frac{{OB'}}{{OB}} = \frac{1}{2}\), góc O chung

=>  ΔOA'B' ∽ ΔOAB (c.g.c)

- Có \(\frac{{OC'}}{{OC}} = \frac{{OB'}}{{OB}} = \frac{1}{2}\), góc O chung

=> ΔOB'C' ∽ ΔOBC(c.g.c)

=> ΔABC ∽ ΔA'B'C' (c.g.c)

- Đường thẳng có đi qua O 

20 tháng 3 2020

Tự vẽ hình.

a) Xét tam giác OAB có AB // CD

⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)

=> OC = 4cm, DC = 6cm

Vậy OC = 4cm và DC = 6cm

b) Xét tam giác FAB có DC // AB

⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )

c) Theo (1), ta đã có:

OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)

Vì MN // AB mà AB // DC => MN // DC

Xét tam giác ADC có MO// DC

⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)

CMTT : ONDC=OBDBONDC=OBDB (4)

Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )

Xét ΔOAB có 

M∈OA(gt)

N∈OB(gt)

\(\dfrac{OM}{OA}=\dfrac{ON}{OB}\left(=\dfrac{1}{3}\right)\)

Do đó: MN//AB(Định lí Ta lét đảo)

Xét ΔOAB có 

M∈OA(gt)

N∈OB(gt)

MN//AB(cmt)

Do đó: \(\dfrac{MN}{AB}=\dfrac{OM}{OA}\)(Hệ quả của Định lí Ta lét)

\(\dfrac{MN}{AB}=\dfrac{1}{3}\)(1)

Xét ΔAOC có 

M∈OA(gt)

P∈OC(gt)

\(\dfrac{OM}{OA}=\dfrac{OP}{OC}\left(=\dfrac{1}{3}\right)\)

Do đó: MP//AC(Định lí Ta lét đảo)

Xét ΔOAC có 

M∈OA(gt)

P∈OC(gt)

MP//AC(cmt)

Do đó: \(\dfrac{MP}{AC}=\dfrac{OM}{OA}\)(Hệ quả của Định lí ta lét)

hay \(\dfrac{MP}{AC}=\dfrac{1}{3}\)(2)

Xét ΔOBC có 

N∈BO(gt)

P∈CO(gt)

\(\dfrac{ON}{OB}=\dfrac{OP}{OC}\left(=\dfrac{1}{3}\right)\)

Do đó: NP//BC(Định lí Ta lét đảo)

Xét ΔOBC có 

N∈BO(gt)

P∈CO(gt)

NP//BC(cmt)

Do đó: \(\dfrac{NP}{BC}=\dfrac{ON}{OB}\)(Hệ quả của Định lí Ta lét)

\(\dfrac{NP}{BC}=\dfrac{1}{3}\)(3)

Từ (1), (2) và (3) suy ra \(\dfrac{MN}{AC}=\dfrac{MP}{AC}=\dfrac{NP}{BC}\)

Xét ΔMNP và ΔABC có

\(\dfrac{MN}{AC}=\dfrac{MP}{AC}=\dfrac{NP}{BC}\)(cmt)

Do đó: ΔMNP∼ΔABC(C-c-c)

15 tháng 1 2020

A B C H A' O C' B'

kẻ đường cao AH có: \(\frac{OA'}{AA'}=\frac{S_{BOC}}{S_{ABC}}\), ta có:

                                 \(\frac{OB'}{BB'}=\frac{S_{AOC}}{S_{ABC}}\)

                              \(\frac{OC'}{CC'}=\frac{S_{AOB}}{S_{ABC}}\)

\(\Rightarrow\frac{OA'}{AA'}+\frac{OB'}{BB'}+\frac{OC'}{CC'}=\frac{S_{BOC}+S_{AOC}+S_{AOB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\) (đpcm)

Nguồn: HiệU NguyễN

2 tháng 4 2018

các bạn chỉ cần giải câu c thôi nha