Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: a chia 3 dư 2 nên a=3k+2
4a+1=4(3k+2)+1
=12k+8+1
=12k+9=3(4k+3) chia hết cho 3
2:
a: 36 chia hết cho 3x+1
=>\(3x+1\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36\right\}\)
mà x là số tự nhiên
nên 3x+1 thuộc {1;4}
=>x thuộc {0;1}
b: 2x+9 chia hết cho x+2
=>2x+4+5 chia hết cho x+2
=>5 chia hết cho x+2
=>x+2 thuộc {1;-1;5;-5}
=>x thuộc {-1;-3;3;-7}
mà x thuộc N
nên x=3
Vì 125 chia cho n dư 5 nên 125 – 5 ⋮ n hay 120 ⋮ n
85 chia cho n dư 1 nên 85 – 1 ⋮ n hay 84 ⋮ n
Suy ra n ∈ UC(120,84) và n>5
Có UCLN(120,84) = 12 nên n ∈ U(12) = {1;2;3;4;6;12} và n>5
Vậy n ∈ {6;12}
Gọi số đó là : \(\frac{ }{abc}\) ( a ; b ; c < 10 và a khác 0 )
Vì số đó chia 5 dư 3 nên tận cùng của số đó là : 3 hoặc 8 .
Mà số đó chia hết cho 2 nên tận cùng của số đó là : 8 .
Để số đó chia hết cho 9 thì a + b + c chia hết cho 9 .
Vì \(\frac{ }{abc}\) là số nhỏ nhất nên a = 1 và c = 0 .
Số đó là : 108
1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6
Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60
n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)
n chia hết cho 7 => 60k + 1 chia hết cho 7
<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)
<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)
Vậy k nhỏ nhất là 5
Thế vào (*): n = 301 thỏa mãn
2. a) n = 25k - 1 chia hết cho 9
<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)
<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)
Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4
Thế vào trên được n = 99 thỏa mãn
b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21
Vậy không có n thỏa mãn
c) Đặt n = 9k
9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)
<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)
9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)
Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)
<=> a + 1 ≡ 0 (mod 4) (*)
Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn
Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D
a) D = 9 + 9² + 9³ + ... + 9²⁰²⁰
9D = 9² + 9³ + 9⁴ + ... + 9²⁰²¹
8D = 9D - D
= (9² + 9³ + 9⁴ + ... + 9²⁰²¹) - (9 + 9² + 9³ + ... + 9²⁰²⁰)
= 9²⁰²¹ - 9
D = (9²⁰²¹ - 9) : 8
b) Điều kiện: n ∈ ℕ và n ≠ 1
Do 125 chia n dư 5 nên n là ước của 125 - 5 = 120
Do 85 chia n dư 1 nên n là ước của 85 - 1 = 84
⇒ n ∈ ƯC(120; 84)
Ta có:
120 = 2³.3.5
84 = 2².3.7
⇒ ƯCLN(120; 84) = 2².3 = 12
⇒ n ∈ ƯC(120; 84) = Ư(12) = {2; 3; 4; 6; 12}
Vậy n ∈ {2; 3; 4; 6; 12}
cíu