Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: sin a=căn 3/2
\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)
\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)
cot a=1/tan a=1/căn 3
b: \(tana=2\)
=>cot a=1/tan a=1/2
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>\(\dfrac{1}{cos^2a}=5\)
=>cos^2a=1/5
=>cosa=1/căn 5
\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)
c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)
tan a=5/13:12/13=5/12
cot a=1:5/12=12/5
\(\frac{1-tana}{1+tana}=\frac{1-\frac{sina}{cosa}}{1+\frac{sina}{cosa}}=\frac{\frac{1}{cosa}\left(cosa-sina\right)}{\frac{1}{cosa}\left(cosa+sina\right)}=\frac{cosa-sina}{cosa+sina}\)
\(\sin^2\alpha+\cos^2\alpha=1\\ \Rightarrow\cos^2\alpha=1-0,6^2=0,64\\ \Rightarrow\cos\alpha=0,8=\dfrac{4}{5}\\ \tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{0,6}{0,8}=\dfrac{3}{4}\\ \cot\alpha=\dfrac{1}{\tan\alpha}=\dfrac{1}{0,75}=\dfrac{4}{3}\)
`sin^2 α+cos^2α=1`
`<=> (2/3)^2+cos^2α=1`
`=> cosα= \sqrt5/3`
`=> tan α=(sinα)/(cosα) = (2\sqrt5)/5`
`=> cota = 1/(tanα)=sqrt5/2`
D = \(\left(sin^2a+cos^2a\right)+\left(cos\left(90-a\right)-sina\right)+1+\left(tan^2\left(90-a\right)-\frac{1}{sin^2a}\right)\)
\(=1+\left(sina-sina\right)+1+\left(cot^2a-1-cos^2a\right)=1+1-1=1\)
\(sin\alpha^2+cos\alpha^2=1\Rightarrow sin\alpha^2=1-cos\alpha^2=1-\dfrac{1}{25}=\dfrac{24}{25}\Rightarrow sin\alpha=\dfrac{2\sqrt{6}}{5}\)
\(\Rightarrow cot\alpha=\dfrac{cos\alpha}{sin\alpha}=\dfrac{1}{5}:\dfrac{2\sqrt{6}}{5}=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{24}\)
\(\sin^2\alpha+\cos^2\alpha=1\)
\(\Leftrightarrow\sin^2\alpha=1-\dfrac{1}{25}=\dfrac{24}{25}\)
hay \(\sin\alpha=\dfrac{2\sqrt{6}}{5}\)
\(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)
\(\cot\alpha=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)
ủa cos a=3 đc hả