Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 bạn tham khảo ở đây:
Câu hỏi của Nguyễn Bùi Đại Hiệp - Toán lớp 9 | Học trực tuyến
Câu 2: cách làm: coi \(y=1\) giải pt bậc 3 theo x được: \(x^3+2x^2+2x-5\)
Tổng hệ số bằng 0 nên pt có nghiệm \(x=1\)
Sử dụng Hoocne hạ bậc (hoặc sử dụng casio) tách được: \(\left(x-1\right)\left(x^2+3x+5\right)\)
Như vậy: \(x^3+2xy^2+2x^2y-5y^3=\left(x-y\right)\left(x^2+3xy+5y^2\right)\)
1/ \(\left\{{}\begin{matrix}x^2-2y^2=-1\\2y-x=2x^3-y^3\end{matrix}\right.\)
Nhân vế với vế:
\(\left(x^2-2y^2\right)\left(2y-x\right)=-\left(2x^3-y^3\right)\)
\(\Leftrightarrow2x^2y-x^3-4y^3+2xy^2=y^3-2x^3\)
\(\Leftrightarrow x^3+2xy^2+2x^2y-5y^3=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+3xy+5y^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=y=0\left(ktm\right)\end{matrix}\right.\)
Thay vào pt đầu" \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\left[{}\begin{matrix}x=y=1\\x=y=-1\end{matrix}\right.\)
2/ Đề thiếu, chứng minh pt làm sao nữa?
3/ Vế phải luôn chia 3 dư 1
\(\Rightarrow\) Vế trái ko chia hết cho 3 \(\Rightarrow\) m ko chia hết cho 3 \(\Rightarrow\) \(m^2\) chia 3 dư 1
\(\Rightarrow2^m\) chia 3 dư 1 \(\Rightarrow\) m chẵn \(\Rightarrow m=2k\)
\(2^{2k}.\left(2k\right)^2=\left(3n-2\right)^2+15\)
\(\Leftrightarrow\left(2^k.2k\right)^2-\left(3n-2\right)^2=15\)
\(\Leftrightarrow\left(2^k.2k-3n+2\right)\left(2^k.2k+3n-2\right)=15\)
Pt ước số cơ bản, bạn tự lập bảng
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đ
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đề bài thì
\(x^2_2+x^2_1\ge10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)
Làm tiếp sẽ ra. Câu còn lại tương tự
1.
\(DK:x\ge2\)
\(\Leftrightarrow\left(3\sqrt{x-2}-3\right)+\left(3-\sqrt{x+6}\right)-\left(2x-6\right)=0\)
\(\Leftrightarrow\frac{3\left(x-3\right)}{\sqrt{x-2}+3}-\frac{x-3}{3+\sqrt{x+6}}-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{3}{\sqrt{x-2}+3}-\frac{1}{3+\sqrt{x+6}}-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(1\right)\\\frac{3}{\sqrt{x-2}+3}-\frac{1}{3+\sqrt{x+6}}-2=0\left(2\right)\end{cases}}\)
PT(2) khac khong voi moi \(x\ge2\)
Vay nghiem cua PT la \(x=3\)
\(x^3+2x=y^2-2009\)
\(\Leftrightarrow x^3-x=y^2-3x-2009\)
\(\Leftrightarrow\left(x-1\right)x\left(x+1\right)=y^2-3x-2009\)
Dễ thấy VT chia hết cho 3 nên VP chia hết cho 3
Suy ra \(y^2\) chia 3 dư 2 vì 2009 chia 3 dư 2 và 3x chia hết cho 3 ( vô lý vì số chính phương ko chia 3 dư 2 )
Vậy pt vô nghiệm
Theo đề bài ta có: \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{2}\Leftrightarrow a+b=-\frac{ab}{2}\)
Ta lại có
\(x^2+ax+b=0\) có \(\Delta_1=a^2+4b\)
\(x^2+bx+a=0\) có \(\Delta_2=b^2+4a\)
\(\Rightarrow\Delta_1+\Delta_2=a^2+4b+b^2+4a=a^2+b^2+4\left(a+b\right)\)
\(=a^2+b^2+4\left(\frac{-ab}{2}\right)=a^2+b^2-2ab\)
\(=\left(a-b\right)^2\ge0\)
\(\Rightarrow\) Có ít nhất 1 trong hai \(\Delta_1,\Delta_2\) không âm
Vậy ít nhất 1 trong 2 phương trình trên có nghiệm hay phương trình ban đầu luôn có nghiệm
a) \(3+\sqrt{2x-3}=x\)
\(\Leftrightarrow\sqrt{2x-3}=x-3\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\2x-3=\left(x-3\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\x^2-8x+12=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x=2;x=6\end{cases}}\)
\(\Leftrightarrow x=6\)
b) Ta có: \(F\left(2\right)=a\left(2\right)^3+b.2-1=2009\)
\(\Rightarrow a.\left(2\right)^3+b.2=2009+1=2010\)
Suy ra \(F\left(-2\right)=a.\left(-2\right)^3+b\left(-2\right)-1\)
\(=-\left[a.\left(2\right)^3+b.2\right]-1\)
\(=-\left[2010\right]-1\)
\(=-2011\)
c) Nhẩm thấy x = 1 là nghiệm nên ta phân tách vế trái thành nhân tử có một thừa số là (x -1).
Ta chia đa thức vế trái cho \(x-1\) thì được thương là \(\left(m+1\right)x^2+4mx+4m-1\).
Vậy phương trình tích là:
\(\left(x-1\right)\left[\left(m+1\right)x^2+4mx+4m-1\right]=0\)
Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)
\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^
lỗi hệ thống ??