K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

Vì a,b là 2 số lẻ không chia hết cho 3 nên a, b thuộc  dạng : 3k+1hoặc 3k+2 (k thuộc Z)

Ta xét: (3k+1)2= 9k2+6k+1 chia 3 dư 1

          (3k+2)2=9k2+12k +3+1 chia 3 dư 1

Vì vậy, a2 và b2 đều chia 3 dư 1 => a2-b2 chia hết cho 3 (1)

Lại có: a2 -b2 = a2-1-(b2-1) = (a-1)(a+1)- (b-1)(b+1)

Vì a, b là 2 số lẻ nên a-1,a+1,b-1,b+1 đều là số chẵn mà tích của 2 số chẵn chia hết cho 8 nên (a-1)(a+1)-(b-1)(b+1) chia hết cho 8.(2)

Vậy từ (1) và (2)  và (3,8)=1 ta suy ra: a2-b2 chia hết cho 24.

***********************(nếu không biết tại sao 2 số chẵn liên tiếp chia hết cho 8 thì bạn xem cái này nhé, không cần viết trong lời giải cũng được)

Tại sao 2 số nchẵn liên tiếp lại chia hết cho 8?

2k.(2k+2)= 4k(k+1) , vì k(k+1) là 2 số nguyên liên tiếp nên sẽ chia hết cho 2 nên 4k(k+1) chia hết cho 8.

28 tháng 6 2015

a^3 + b^3 + c^3 - 3 abc =  ( a + b) ^3 - 3ab( a+b) + c^3 - 3abc

                                   = ( a +b +c )^3 - 3( a+b)^2.c - 3(a+b).c^2 - 3ab ( a+b+c)

                                  = ( a+b + c)^3 - 3(a+b).c (a+ b +c) - 3ab(a+b+c)

                                    = (a+ b+ c) [ (a+ b+ c)^2 - 3(a+b).c - 3ab)] chia hết cho a + b +c

1 tháng 10 2019

Áp dụng công thức:  (m – n). ( m+ n) = m2 – n2 => m2 – n2 chia hết (m – n)

Ta có : f(x)=ax2- bx + c

=> Tính chất: f (m) – f(n) chia hết ( m – n)

Ta có:

 f(104) – f(9) chia hết 105

=> f(104) – f(9) chia hết 5

=> f(104) chia hết 5

Mặt khác:

f(104) – f(5) chia hết 99

=> f(104) – f(5) chia hết 9

=> f(104) chia hết 9

Vậy f(104) chia hết (5.9) = 45 

17 tháng 2 2020

  a)    Ta có:\(x.f\left(x+1\right)=\left(x+2\right).f\left(x\right)\)

   +)Thay \(x=0\) ta có:\(2.f\left(0\right)=0\)\(\implies\) \(f\left(0\right)=0\)

     Vậy đa thức \(f\left(x\right)\) có nghiệm là x=0 (1)

   +)Thay \(x=-2\) ta có:\(-2.f\left(-1\right)=0\)\(\implies\) \(f\left(-1\right)=0\)

     Vậy đa thức \(f\left(x\right)\) có nghiệm là x=-1 (2)

Từ (1),(2)

    \(\implies\) đa thức \(f\left(x\right)\) có ít nhất hai nghiệm

17 tháng 2 2020

b)Ta có:\(f\left(x\right)=ax^2+bx+c\)

+)Với x=0 \(\implies\) \(f\left(0\right)=a.0^2+b.0+c=c:2007\left(1\right)\)

+)Với x=1 \(\implies\) \(f\left(1\right)=a.1^2+b.1+c=a+b+c:2007\left(2\right)\)

+)Với x=-1 \(\implies\) \(f\left(-1\right)=a.\left(-1\right)^2-b.1+c=a-b+c:2007\left(3\right)\)

Từ (2);(3) cộng vế với vế ta được:

                  \(\implies\) \(f\left(1\right)+f\left(-1\right)=a+b+c+a-b+c\)

                                                           \(=2a+2c\)

                                                           \(=2.\left(a+c\right):2007\)

    mà \(\left(2,2007\right)=1\)\(\implies\) \(a+c:2007\) \(\left(4\right)\)

Từ \(\left(1\right),\left(4\right)\) \(\implies\) \(a:2007\) \(\left(5\right)\)

Từ \(\left(4\right),\left(2\right)\) \(\implies\) \(b:2007\) \(\left(6\right)\)

Từ \(\left(1\right),\left(5\right),\left(6\right)\) \(\implies\) các hệ số a,b,c đều chia hết cho 2007\(\left(đpcm\right)\)

1 tháng 10 2019

Áp dụng công thức:  (m – n). ( m+ n) = m2 – n2 => m2 – n2 chia hết (m – n)

Ta có : f(x)=ax2- bx + c

=> Tính chất: f (m) – f(n) chia hết ( m – n)

Ta có:

 f(104) – f(9) chia hết 105

=> f(104) – f(9) chia hết 5

=> f(104) chia hết 5

Mặt khác:

f(104) – f(5) chia hết 99

=> f(104) – f(5) chia hết 9

=> f(104) chia hết 9

Vậy f(104) chia hết (5.9) = 45