Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này dễ ẹt ak
nhưng giúp mình bài này đi
chotam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
Bài làm
a) A = x2 + 2y2 - 6x + 8y + 25
A = ( x2 + 6x + 9 ) + 2( y2 + 4y + 4 ) + 8
A = ( x + 3 )2 + 2( y + 2 )2 + 8 > 8
Dấu " = " xảy ra <=> x = -3 ; y = -2.
Vậy AMin = 8 khi x = -3; y = -2
Mấy câu sau tương tự, tự giải theo, bh duyệt bài bên lazi đây,
3) \(A=2017.2019=\left(2018+1\right)\left(2018-1\right)=2018^2-1\)
\(\Rightarrow A< B\)
Bài 1:
a) \(x^2+2y^2+2xy-2y+2=0\)
\(\Leftrightarrow\)\(\left(x+y\right)^2+\left(y-1\right)^2+1=0\)
Ta thấy \(VT>0\)
suy ra phương trình vô nghiệm
b) \(x^2+y^2-4x+4=0\)
\(\Leftrightarrow\)\( \left(x-2\right)^2+y^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x-2=0\\y=0\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=2\\y=0\end{cases}}\)
Vậy...
Bài 2:
a) \(8y^3-125x^3=\left(2y-5x\right)\left(4y^2+10xy+25y^2\right)\)
b) \(a^6-b^6=\left(a^3-b^3\right)\left(a^3+b^3\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)\)
c) \(x^4-1=\left(x^2-1\right)\left(x^2+1\right)=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)
Bài 3:
\(A=2017.2019=\left(2018-1\right)\left(2018+1\right)=2018^2-1< 2018^2=B\)
Vậy \(A< B\)
Theo BĐT Cauchy ta có :
\(\dfrac{a^2}{1}+\dfrac{b^2}{1}+\dfrac{c^2}{1}\ge\dfrac{\left(a+b+c\right)^2}{1+1+1}=\dfrac{\left(\dfrac{3}{2}\right)^2}{3}=\dfrac{3}{4}\)
a, Đặt \(x=\dfrac{1}{2}+a\) ; \(y=\dfrac{1}{2}+b;z=\dfrac{1}{2}+c\)
Do a + b + c = 3/2 => x + y + z = 0
Ta có: \(a^2+b^2+c^2=\left(\dfrac{1}{2}+x\right)^2+\left(\dfrac{1}{2}+y\right)^2+\left(\dfrac{1}{2}+z\right)^2\)
\(=\left(\dfrac{1}{4}+x+x^2\right)+\left(\dfrac{1}{4}+y+y^2\right)+\left(\dfrac{1}{4}+z+z^2\right)\)
\(=\dfrac{3}{4}+\left(x+y+z\right)+x^2+y^2+z^2\ge\dfrac{3}{4}\)(đpcm)
P/S Nếu không muốn cm BĐT đó thì làm cách này cx đc