K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Trong bài Đại lượng tỉ lệ thuân của lớp 7 có ghi: Nếu hai đại lượng tỉ lệ thuận với nhau thì: 1. Tỉ số hai giá trị tương ứng của chúng không thay đổi. Giả sử có 2 đại lượng x và y cùng với hằng số k là 2. Vậy bất cứ giá trị nào của x, y tỉ lệ thuận với nhau và có hằng số k là 2 thì đó là giá trị tương ứng của 2 đại lượng x và y? 2....
Đọc tiếp

 Trong bài Đại lượng tỉ lệ thuân của lớp 7 có ghi:

 Nếu hai đại lượng tỉ lệ thuận với nhau thì:

 1. Tỉ số hai giá trị tương ứng của chúng không thay đổi.

 Giả sử có 2 đại lượng x và y cùng với hằng số k là 2. Vậy bất cứ giá trị nào của x, y tỉ lệ thuận với nhau và có hằng số k là 2 thì đó là giá trị tương ứng của 2 đại lượng x và y?

 2. Tỉ số của 2 giá trị bất kì của đại lượng này bằng tỉ số của 2 giá trị tương ứng của đại lượng kia.

 Đại lượng này là x, đại lượng kia là y? Vậy 2 giá trị bất kì của đại lượng x là gì? 2 giá trị tương ứng của 2 đại lượng kia là gì? Cho ví dụ?

 Bài toán 1 bài Một số bài toán về đại lượng tỉ lệ thuân như sau:

 Hai thanh chì có thể tích là 12cm3 và 17cm3. Hỏi mỗi thanh nặng bao nhiêu gam, biết rằng thanh thứ hai nặng hơn thanh thứ nhất 56,5g?

Phần giải có ghi: Giả sử khối lượng của hai thanh chì tương ứng là m1 và m2 gam. Do đó khối lượng và thể tích của vật thể là hai đại lượng tỉ lệ thuận với nhau, nên có \(\frac{m^1}{12}=\frac{m^2}{17}\).

 Nếu 2 đại lượng của từng thanh chì là 2 đại lượng tỉ lệ thuận thì có liên quan gì đến \(\frac{m^1}{12}=\frac{m^2}{17}\)?

Bài toán 2 có thể cho mình cách giải và giải thích vì sao?

 

1
12 tháng 9 2017

Cái đề sao mà dài... Chị coppy lên hỏi thẳng gg chứ không cần đăng lên đây cũng được. :))

a) Ta có : a = yx

Thay vào ta có

a=8.(-4) = -32

Vậy y tỉ lệ nghịch với x theo hệ số tỉ lệ -32

b) y=\(\frac{a}{x}\)=\(-\frac{32}{x}\)

c) Nếu x=-1

\(\Rightarrow y=\frac{-32}{-1}=32\)

Nếu x = 16

\(\Rightarrow y=\frac{-32}{16}=-2\)

Vậy...

hok tốt!!!

11 tháng 12 2019

a) Đề cho x và y là hai đại lượng tỉ lệ nghịch nên công thức tổng quát là: \(y=\frac{a}{x}\)

thay x = 6, y = 10 vào công thức ta được: \(10=\frac{a}{6}\)

\(\Rightarrow a=60\)

vậy hệ số tỉ lệ là 60

b) theo trên, ta biểu diện y theo x như sau: \(y=\frac{60}{x}\)

c) khi x = 5 thì \(y=\frac{60}{5}=12\)

khi x = 12 thì \(y=\frac{60}{12}=5\)

25 tháng 11 2019

bài 1

a Từ công thức y=k*x nên k=y/x

hệ số tỉ lệ của y đối với x là k=y/x=4/6

b y=k*x =4/6*x

c nếu x =10 thì y = 4/6*10=4.6

18 tháng 11 2023

x và y là hai đại lượng tỉ lệ thuận nên:

\(\Rightarrow y=kx\) (với k là hệ số tỉ lệ) 

Ta có: \(x=15;y=20\)

\(\Rightarrow k=\dfrac{y}{x}=\dfrac{20}{15}=\dfrac{4}{3}\)

Vậy x và y là hai đại lượng tỉ lệ thuận, với x = 15 và y = 20 thì hệ số tỉ lệ (k) của y đối với x là \(\dfrac{4}{3}\)

1. Một cửa hàng có 3 tấm vải, dài tổng cộng 126m. Sau khi họ bán đi \(\frac{1}{2}\)tấm vải thứ nhất, \(\frac{2}{3}\)tấm vải thứ hai và \(\frac{3}{4}\)tấm vải thứ ba, thì số vải còn lại ở ba tấm bằng nhau. Hãy tính chiều dài của ba tấm vải lúc ban đầu.2. Có 3 tủ sách đựng tất cả 2250 cuốn sách. Nếu chuyển 100 cuốn từ tủ thứ nhất sang tủ thứ ba thì...
Đọc tiếp

1. Một cửa hàng có 3 tấm vải, dài tổng cộng 126m. Sau khi họ bán đi \(\frac{1}{2}\)tấm vải thứ nhất, \(\frac{2}{3}\)tấm vải thứ hai và \(\frac{3}{4}\)tấm vải thứ ba, thì số vải còn lại ở ba tấm bằng nhau. Hãy tính chiều dài của ba tấm vải lúc ban đầu.

2. Có 3 tủ sách đựng tất cả 2250 cuốn sách. Nếu chuyển 100 cuốn từ tủ thứ nhất sang tủ thứ ba thì số sách ở tủ thứ 1, thứ 2, thứ 3 tỉ lệ với 16,15,14. Hỏi trước khi chuyển thì mỗi tủ có bao nhiêu cuốn sách?

3. Ba xí nghiệp cùng xây dựng chung 1 cây cầu hết 38 triệu đồng. Xí nghiệp 1 có 40 xe ở cách cầu 1,5 km, xí nghiệp 2 có 20 xe ở cách cầu 3 km, xí nghiệp 3 có 30 xe cách cầu 1 km. Hoi3moi64 xí nghiệp phải trả cho việc xây dựng cầu bao nhiêu tiền, biết rằng số tiền phải trả tỉ lệ thuận với số xe và tỉ lệ nghịch với khoảng cách từ xí nghiệp đến cầu?

4. Số hs 4 khối 6, 7, 8, 9 tỉ lệ với các số 9; 8; 7; 6. Biết rằng số hs khối 9 ít hơn số hs khối 7 là 70 hs. Tính số hs của mỗi khối.

5. Theo hợp đồng, 2 tổ sản xuất chia lãi với nhau theo tỉ lệ 3 : 5. Hỏi mỗi tổ được chia bao nhiêu nếu tổng số lãi là 12 800 000 đồng.

6. Tính độ dài các cạnh của 1 tam giác biết chu vi là 22 cm và các cạnh tỉ lệ với các số 2; 4; 5.

1
31 tháng 7 2016

Bài 1: Gọi chiều dài 3 tấm vải lúc đầu lần lượt là a,b,c. 

Theo đề bài, ta có: a+b+c= 126 (m) 

và \(a-\frac{1}{2}\cdot a=b-\frac{2}{3}\cdot b=c-\frac{3}{4}\cdot c\)

\(\Leftrightarrow\left(1-\frac{1}{2}\right)a=\left(1-\frac{2}{3}\right)b=\left(1-\frac{3}{4}\right)c\)

\(\Leftrightarrow\frac{1}{2}a=\frac{1}{3}b=\frac{1}{4}c\)

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{126}{9}=14\)

Đến đây tự tìm a,b,c.

Bài 2: 

Gọi số sách ở 3 tủ lần lượt là a,b,c:

Theo đề bài, ta có: a+b+c = 2250

và \(\frac{a-100}{16}=\frac{b}{15}=\frac{c+100}{14}\)

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{a-100}{16}=\frac{b}{15}=\frac{c+100}{14}=\frac{a-100+b+c+100}{16+15+14}=\frac{2250}{45}=50\)

Tự tìm tiếp nha.

Bài 4: Gọi số hs khối 6,7,8,9 lần lượt là a.b.c.d .

Theo đề, ta có; b - d = 70

và \(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\)

Đặt \(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=k\)

\(\Rightarrow a=9k\)

\(b=8k\)

\(c=7k\)

\(d=6k\)

Thay b= 8k và d=6k vào b-d= 70:

8k - 6k = 70

2k = 70

k= 35

=>  a=9k = 9* 35 = 315

(tìm b,c,d tương tự như tìm a. Sau đó kết luận)

Bài 5: Gọi số lãi của 2 tổ là a và b.

Theo đề , ta có: a+b = 12 800 000

và \(\frac{a}{b}=\frac{3}{5}\Rightarrow\frac{a}{3}=\frac{b}{5}\)

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{a}{3}=\frac{b}{5}=\frac{a+b}{3+5}=\frac{12800000}{8}=1600000\)

(tự tìm a,b)

Bài 6: 

Gọi độ dài 3 cạnh của tam giác đó là a,b,c:

Theo đề, ta có: a+b+c=22

và \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{22}{10}=2,2\)

=> (tự tìm a,b,c) 

3 tháng 3 2020

a) Vì x và y là hai đại lượng tỉ lệ nghịch nên \(y=\frac{k}{x}\left(k\ne0\right)\)

Khi x = -4 thì y = 8 => \(8=\frac{k}{-4}\)=> k = 8.(-4) = -32

b) Biểu diễn :   \(y=\frac{-32}{x}\)

c) Khi x = -1 thì \(y=\frac{-32}{-1}=32\)

Khi x = 16 thì \(y=\frac{-32}{16}=-2\)