Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có
\(m^2+105^n+2^{105}=m^2+\left(...5\right)+2^{104}.2\)
\(m^2+\left(...5\right)+\left(...6\right).2\)
\(m^2+\left(...5\right)+\left(...2\right)\)
\(m^2+\left(...7\right)\)
Ta có
m2 luôn có tận cùng là 1;4;5;6;9
\(\Rightarrow m^2+\left(...7\right)\ne\left(...0\right)\)
=> m2+(...7) không chia hết cho 10
Hay \(m^2+105^n+2^{105}\)không chia hết cho 10
Câu b tương tự
a) (am)n = am.am.am.......am (n lần am) =am.n
b) Ta có: ( - 2)3000= 23000 = (23)1000=81000
( -3)2000= 32000= ( 32)1000 =91000
Vì 8<9 nên 81000<91000
Vậy ( -2)3000 < ( -3)2000
Bài 1a) Đó là công thức lũy thừa của lũy thừa rồi bạn:
\(\left(a^m\right)^n=a^{m\cdot n}\)
1b) \(\left(-2\right)^{3000}=2^{3000}\)
\(\left(-3\right)^{2000}=3^{2000}\)
\(\Rightarrow2^{3000}=\left(2^3\right)^{1000}\)
\(\Rightarrow3^{2000}=\left(3^2\right)^{1000}\)
\(2^3< 3^2\)
\(\Rightarrow\left(-2\right)^{3000}< \left(-3\right)^{2000}\)
(am)n = am.am.........am (n thừa số am)
= am+m+m+.....+m (n số hạng m)
= am.n (đpcm)
(a^m)^n = (a.a.a..a)^n ( m số a )
= a^n . a^n . a^n ....a^n ( m số a^n)
= a^n+n+n+...+n ( m số n )
=a^m.n ( ĐPCM)
3,
b, Có : abcd = 100ab + cd
= 100.2.cd + cd
= 200cd + cd
= ( 200 + 1 ). cd
= 201. cd
= 3.67 + cd
suy ra abcd chia hết cho 67.
a, Có : abc = abc0
abc0 = 1000a + bc0
= 999a + a + bc0
= 999a + bca
= 27.37a + bca
Có : abc chia hết cho 27 suy ra abc0 chia hết cho 27
suy ra 27. 37a + bca chia hết cho 27
suy ra bca chia hết cho 27.
a) am = an
=> am - an = 0
=> an.(am-n - 1) = 0
=> an = 0 hoặc am-n - 1 = 0
=> a = 0 hoặc am-n = 1
=> a = 0 hoặc m - n = 0
=> m = n
b) am > an
=> am - an > 0
=> an.(am-n - 1) > 0
=> an và am-n - 1 cùng dấu
Mà a > 0 => an > 0 => am-n - 1 > 0
=> am-n > 1
=> m - n > 0
=> m > n