Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(\frac{a}{b^2},\frac{b}{c^2},\frac{c}{a^2}\right)=\left(x,y,z\right)\)
\(\Rightarrow xyz=\frac{abc}{a^2b^2c^2}=\frac{1}{abc}=1\)
Theo bài ra ta có : \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
\(\Leftrightarrow x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow x+y+z=xy+yz+xz\)
\(\Leftrightarrow\left(xy-x-y+1\right)-1+z\left(x+y-1\right)=0\)
\(\Leftrightarrow\left(xy-x-y+1\right)+z\left(x+y-1-xy\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)-z\left(x-1\right)\left(y-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(1-z\right)=0\)
\(\Leftrightarrow\frac{a-b^2}{b^2}.\frac{b-c^2}{c^2}.\frac{a^2-c}{a^2}=0\)
\(\Leftrightarrow\left(a-b^2\right)\left(b-c^2\right)\left(c-a^2\right)=0\)
Ta có đpcm
\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự : \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\) ; \(\frac{c}{1+a^2}\ge c-\frac{ac}{2}\)
Cộng theo vế : \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{1}{2}\left(ab+bc+ac\right)\ge3-\frac{1}{2}.\frac{\left(a+b+c\right)^2}{3}=\frac{3}{2}\)
\(\Rightarrow\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Ap dung BDT Cosi nguoc dau:
VT <=> \(∑ a-{ab^2\over 1+b^2} ≥ ∑ a-{ab^2\over 2b}=∑ a-{ab\over 2} \)
\(= a+b+c-{ab+ac+bc\over 2} \)
\(≥ 3- {(a+b+c)^2\over 6}=3-{9\over 6}={3\over 2} \) \( BDT {(a+b+c)^2\over 3} ≥ ab+ac+bc \)
=> DPCM
câu a,mình ko biết nhưng câu b bạn cộng 1+b cho số hạng đầu áp dụng cô si,các số hạng khác tương tự rồi cộng vế theo vế,ta có điều phải c/m
Áp dụng BĐT AM-GM: \(1+b^2\ge2b\)
\(\Rightarrow\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)
Cộng vế với vế 3 BĐT trên ta được: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\left(a+b+c\right)-\frac{ab+bc+ca}{2}=3-\frac{ab+bc+ca}{2}\)
Mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)
Nên \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{\left(a+b+c\right)^2}{6}=3-\frac{9}{6}=\frac{3}{2}\)(đpcm).
Dấu "=" xảy ra <=> a=b=c=1.
Sang học 24 tìm ai tên Perfect Blue nhé t làm bên đó rồi đưa link thì lỗi ==" , tìm tên đăng nhập springtime ấy
Ta có: \(a^2+b^2\ge2ab\)
\(\Rightarrow\frac{ab}{a^2+b^2}\le\frac{1}{2}\)
Tương tự cộng lại suy ra \(VT\le\frac{3}{2}\)
Suy ra sai đề :)