Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Tổng các chữ số của ababab là :
a+b+a+b+a+b = 3a+3b = 3.[a+b] chia hết cho 3
=> ababab chia hết cho3
b/
S=16^5+2^15=[2^4]^5+2^15=2^20+2^15=2^15. [2^5+1] = 2^15.33 chia hết cho 33
=> đpcm
a)
ababab=ab0000+ab00+ab
= abx10000+abx100+abx1
=abx(10000+100+1)
=abx10101
ta có 10101 chia hết cho 3
nên abx10101 chia hết cho3
suy ra ababab là bội của 3
a)Tổng các chữ số của ababab = a+b+a+b+a+b=3a+3b=3(a+b)\(⋮3\)
=) ababab\(⋮3\)=) ababab\(\)là bội của 3 ( Đpcm )
b) Ta có \(n+6⋮n-4\)( Theo đề bài )
mà \(n-4⋮n-4\)
=) \(\left(n+6\right)-\left(n-4\right)⋮n-4\)
=) \(n+6-n+4⋮n-4\)
=) \(10⋮n-4\)=) \(n-4\inƯ\left(10\right)=\left\{1,2,5,10\right\}\)( Với ước dương )
=) \(n=\left\{5,6,9,14\right\}\)
????????????????
?????????????????
??????????????
/?????????????
/?????????????????????????????????????????????
???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
a) Ta có : ababab = 10000 ab + 100 ab + ab = ( 10000+100+1 ) ab = 10101 ab
Vì 10101 \(⋮\)3 => 10101 ab \(⋮\)3
=> ababab \(⋮\)3
=> ababab là bội của 3 ( đpcm )
b) Ta có : \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.\left(2^5+1\right)=2^{15}.33\)
Vì \(33⋮33\)và \(2^{15}\in Z\)=> \(16^5+2^{15}⋮33\)( đpcm )
Vậy bài toán được chứng minh !
Chúc mng vui vẻ ❤️❤️❤️
Ta có :
ababab = ab . 10101
Do 10101 chia hết cho 3
=> ab . 10101 chia hết cho 3
hay ababab chia hết cho 3
ababab chia hết cho 3 nên ababab thuộc B ( 3 )
b ) Ta có :
165 + 215
( 24 )5 + 215
= 220 + 215
= 215 . 25 + 215
= 215 . ( 25 + 1 )
= 215 . 33 chia hết cho 33
Vậy 165 + 215 chia hết cho 33
a/ \(\overline{ababab}=\overline{10101}.\overline{ab}\) ta có \(\overline{10101}⋮3\Rightarrow\overline{ababab}⋮3\) nên \(\overline{ababab}\) là bội của 3
b/ gọi d là ước chung của tử và mẫu nên
\(12n+1⋮d\Rightarrow5\left(12n+1\right)=60n+5⋮d\)
\(30n+2⋮d\Rightarrow2\left(30n+2\right)=60n+4⋮d\)
\(\Rightarrow60n+5-60n-4=1⋮d\Rightarrow d=1\)
Tử và mẫu chỉ có ước chung là 1 nên phân số là tối giản
c/
\(S=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.33⋮33\)
b) Gọi d= ƯCLN(12n+1;30n+2)
=>12n+1chia hết cho d; 30n+2 chia hết cho d
=>5(12n+1)chia hết cho d; 2(30n+2) chia hết cho d
=> 5(12n+1)-2(30n+2) chia hết cho d
=> (60n+5)-(60n+4) chia hết cho d
=> 60n=5-60n-4 chia hết cho d
=>1 chia hết cho d
=> d = 1
=>(12n+1;30n+2) chia hết cho d
=> 12n+1/30n+2 là phân số tối giản
c) có S= 165+215
=(24)5+215
=220+215
=215+220-15+215
=215.220-15+215
=215.(220-15+1)
=215.(25+1)
=215.(32+1)
=215.33
mà 33 chia hết cho 33
=>215.33 chia hết cho 33
=>165+215 chia hết cho 33
=> S chia hết cho 33 (ĐPCM)
ababab=a*100000+b*10000+a*1000+b*100+a*10+b=(a*1 00000+a*1000+a*10)+(b*10000+b*100+b)=a*(100000+100 0+10)+b*(10000+100+1)=a*101010+b*10101
Ta có:
Vì 101010 chia hết cho 3 a*101010 chia hết cho 3
Vì 10101 chia hết cho 3 b*10101 chia hết cho 3
Vì 2 số hạng đều chia hết cho 3 tổng chia hết cho 3
ababab chia hết cho 3 ababab là bội của 3 (ĐPCM)
tong cac chu so bang a+b+a+b+a+b=3a+3b=3(a+b) chia het cho 3( la boi cua 3)
Tick nha
Bạn chứng minh bằng 2 cách như sau:
ababab = ab x 10101 = ab x 3 x 3367
Chia hết cho 3
Cách 2: Dựa vào dấu hiệu chia hết
ababab có tổng các chữ số là: a + b + a + b + a + b = 3a + 3b = 3(a+ b)
Chia hết cho 3
Ta có
ababab=ab.10101=ab.3.3367
Mà ab.3.3367 chia hết cho 3=>ababab chia hết cho 3
Phần a có 2 cách nha bạn:
-C1:Ta thấy tổng các chữ số của ababab là :a+b+a+b+a+b =3a+3b=3x(a+b) chia hết cho 3
Vậy ababab chia hết cho 3
-C2:ta có :ababab=a x100000+b x10000+a x1000+b x100+a x10+b
=a x101010+b x10101
=3x(a x33670+b x3367) chia hết cho 3
Vậy ababab chia hết cho 3