Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Biến đổi tương đương:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)
\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)
\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)
\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)
\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d\)
a, Xét : 196 = 14^2 = (a^2+b^2+c^2) = a^4+b^4+c^4+2.(a^2b^2+b^2c^2+c^2a^2)
<=> a^4+b^4+c^4 = 196 - 2.(a^2b^2+b^2c^2+c^2a^2)
Xét : 0 = (a+b+c)^2 = a^2+b^2+c^2+2.(ab+bc+ca)
Mà a^2+b^2+c^2 = 14
<=> 2.(ab+bc+ca) = -14
<=> ab+bc+ca = -7
<=> a^2b^2+b^2c^2+c^2a^2+2abc.(a+b+c) = 49
Lại có : a+b+c = 0
<=> a^2b^2+b^2c^2+c^2a^2 = 49
<=> A = a^4+b^4+c^4 = 196 - 2.49 = 98
Tk mk nha
b) \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
\(\Leftrightarrow\)\(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}+\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}=0\)
\(\Leftrightarrow\)\(x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\)
\(\Leftrightarrow\)\(x^2=y^2=z^2=0\)
\(\Leftrightarrow\)\(x=y=z=0\)
Vậy \(D=0\)
1.
\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)
\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
Dấu "=" khi \(a=b=c\)
2.
\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)
Dấu "=" khi \(a=b=c=d\)
Ta có:\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
\(\ge\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{b+c+d+a}+\frac{d}{d+a+b+c}=1\)
và \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
\(\le\frac{a}{a+c}+\frac{b}{b+d}+\frac{c}{c+a}+\frac{d}{d+b}\)
\(=1+1=2\)
Vậy \(1\le\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\le2\)(đpcm)
Ta có \(\frac{1}{a^3}+\frac{1}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)
\(\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge\frac{3}{b^2c}\)
..............................
=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\ge\frac{1}{a^2b}+\frac{1}{b^2c}+\frac{1}{c^2d}+\frac{1}{d^2a}\left(1\right)\)
Áp dụng bđt cosi ta có
\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)
\(\frac{b^2}{c^5}+\frac{1}{b^2c}\ge\frac{2}{c^3}\)
\(\frac{c^2}{d^5}+\frac{1}{c^2d}\ge\frac{2}{d^3}\)
\(\frac{d^2}{a^5}+\frac{1}{d^2a}\ge\frac{2}{a^3}\)
Cộng vế của các bđt trên và kết hợp với (1)
=> ĐPCM
Dấu bằng xảy ra khi a=b=c
a, Có : (a-b)^2 >= 0
<=> a^2+b^2-2ab >= 0
<=> a^2+b^2 >= 2ab
<=> a^2+b^2+2ab >= 4ab
<=> (a+b)^2 >= 4ab
Vì a,b > 0 nên ta chia 2 vế bđt cho (a+b).ab ta được :
a+b/ab >= 4/a+b
<=> 1/a+1/b >= 4/a+b
=> ĐPCM
Dấu "=" xảy ra <=> a=b>0
Tk mk nha
Biến đổi tương đương
<=> (a + b)/ab >/ 4/(a + b) , do a,b > 0 --> ab > 0 và a + b > 0, quy đồng 2 vế
<=> (a + b)2 >/ 4ab
<=> a2 + 2ab + b2 >/ 4ab
<=> a2 - 2ab + b2 >/ 0
<=> (a - b)2 >/ 0 luôn đúng a,b > 0
=>đpcm
Dấu " = " xảy ra ⇔ a = b