Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\) với a,b,c > 0
Áp dụng BĐT Chauchy cho 2 số không âm, ta có:
\(\dfrac{bc}{a}+\dfrac{ac}{b}=c\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\ge c\sqrt{\dfrac{b}{a}.\dfrac{a}{b}}=2c\)
\(\dfrac{ac}{b}+\dfrac{ab}{c}=a\left(\dfrac{c}{b}+\dfrac{b}{c}\right)\ge a\sqrt{\dfrac{c}{b}.\dfrac{b}{c}}=2a\)
\(\dfrac{ab}{c}+\dfrac{bc}{a}=b\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\ge b\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}=2b\)
Cộng vế theo vế ta được:
\(2\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)
\(VT=a-\dfrac{ab^2}{b^2+1}+b-\dfrac{bc^2}{c^2+1}+c-\dfrac{ca^2}{a^2+1}\)
\(VT=3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}b^2+1\ge2\sqrt{b^2}=2b\\c^2+1\ge2\sqrt{c^2}=2c\\a^2+1\ge2\sqrt{a^2}=2a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{ab^2}{b^2+1}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\\\dfrac{bc^2}{c^2+1}\le\dfrac{bc^2}{2c}=\dfrac{bc}{2}\\\dfrac{ca^2}{a^2+1}\le\dfrac{ca^2}{2a}=\dfrac{ca}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\le\dfrac{ab+bc+ca}{2}\)
\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge3-\dfrac{ab+bc+ca}{2}\) ( 1 )
Theo hệ quả của bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow3\ge ab+bc+ca\)
\(\Rightarrow\dfrac{3}{2}\ge\dfrac{ab+bc+ca}{2}\)
\(\Rightarrow\dfrac{3}{2}\le3-\dfrac{ab+bc+ca}{2}\) ( 2 )
Từ (1) và (2)
\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\ge\dfrac{3}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=1\)
Áp dụng BĐT Svacxơ:
\(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{cd}+\dfrac{1}{da}\ge\dfrac{4}{ab+bc+cd+da}\)
Áp dụng BĐT Cô-si:
\(\dfrac{4}{ab+bc+cd+da}\ge\dfrac{4}{a^2+b^2+c^2+d^2}\)
Ta cần c/m: \(\dfrac{4}{a^2+b^2+c^2+d^2}\ge a^2+b^2+c^2+d^2\)
\(\Rightarrow\left(a^2+b^2+c^2+d^2\right)^2\ge4\)
Áp dụng BĐT Svacxơ: \(\left(\dfrac{a^2}{1}+\dfrac{b^2}{1}+\dfrac{c^2}{1}+\dfrac{d^2}{1}\right)^2\ge\dfrac{\left(a+b+c+d\right)^{2^2}}{16}\)
mà a+b+c+d=4 nên: \(\dfrac{\left(a+b+c+d\right)^4}{16}\ge\dfrac{64}{16}=4=VP\)
Vậy ta có đpcm.
a: \(N=\left(\dfrac{\left(1-a\right)\left(a^2+a+1\right)}{1-a}-a\right)\cdot\dfrac{a^3-a^2-a+1}{-\left(a^2-1\right)}\)
\(=\left(a^2+1\right)\cdot\dfrac{a^2\left(a-1\right)-\left(a-1\right)}{-\left(a-1\right)\left(a+1\right)}\)
\(=-\left(a^2+1\right)\cdot\dfrac{\left(a-1\right)\left(a^2-1\right)}{\left(a-1\right)\left(a+1\right)}\)
\(=-\left(a^2+1\right)\cdot\left(a-1\right)\)
b: Để N<0 thì \(-\left(a^2+1\right)\left(a-1\right)< 0\)
\(\Leftrightarrow\left(a^2+1\right)\left(a-1\right)>0\)
=>a-1>0
hay a>1
Giải câu 1 thôi câu 2 không hứng lắm:
\(P=\dfrac{1}{2a+3b+c+6}+\dfrac{1}{2b+3c+a+6}+\dfrac{1}{2c+3a+b+6}\)
Ta có:
\(\dfrac{1}{2a+3b+c+6}\le\dfrac{1}{16}\left(\dfrac{1}{a+b+c}+\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{b+2}\right)=\dfrac{1}{16}\left(\dfrac{1}{a+b+c}+\dfrac{1}{a+2}+\dfrac{2}{b+2}\right)\left(1\right)\)
Tương tự ta có:
\(\left\{{}\begin{matrix}\dfrac{1}{2b+3c+a+6}\le\dfrac{1}{16}\left(\dfrac{1}{a+b+c}+\dfrac{1}{b+2}+\dfrac{2}{c+2}\right)\left(2\right)\\\dfrac{1}{2c+3a+b+6}\le\dfrac{1}{16}\left(\dfrac{1}{a+b+c}+\dfrac{1}{c+2}+\dfrac{2}{a+2}\right)\left(3\right)\end{matrix}\right.\)
Cộng (1), (2), (3) vế theo vế ta được:
\(P\le\dfrac{3}{16}\left(\dfrac{1}{a+b+c}+\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)\)
\(\le\dfrac{3}{16.3\sqrt[3]{abc}}+\dfrac{3}{16}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)\)
\(=\dfrac{1}{16}+\dfrac{3}{16}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)\left(4\right)\)
Giờ ta tính Max của \(Q=\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)\)
Vì \(abc=1\) nên không mất tính tổng quát ta giả sử \(\left\{{}\begin{matrix}ab\le1\\c\ge1\end{matrix}\right.\)
Ta có: \(Q=\dfrac{1}{2}.\left(\dfrac{1}{\dfrac{a}{2}+2}+\dfrac{1}{\dfrac{b}{2}+2}\right)+\dfrac{1}{c+2}\)
Ta có bổ đề: Với \(x,y>0;xy\le1\) thì
\(\dfrac{1}{x^2+1}+\dfrac{1}{y^2+1}\le\dfrac{2}{xy+1}\)
Áp dụng vào bài toán ta được:
\(Q\le\dfrac{2}{1+\dfrac{\sqrt{ab}}{2}}+\dfrac{1}{c+2}=\dfrac{2\sqrt{c}}{2\sqrt{c}+1}+\dfrac{1}{c+2}\)
Xét hàm số \(f\left(\sqrt{c}\right)=\dfrac{2\sqrt{c}}{2\sqrt{c}+1}+\dfrac{1}{c+2}\) với \(\sqrt{c}\ge1\) thì hàm số \(f\left(\sqrt{c}\right)\) nghịch biến. Vậy Q đạt GTLN khi c bé nhất.
\(\Rightarrow Q\le f\left(1\right)=1\left(2\right)\)
Từ (4) và (5) ta suy ra
\(P\le\dfrac{1}{16}+\dfrac{3}{16}.1=\dfrac{1}{4}\)
Vậy GTLN là \(P=\dfrac{1}{4}\) đạt được khi \(a=b=c=1\)
2) A = n3 - n2 + n - 1
A = n2(n - 1) + (n - 1)
A = (n - 1)(n2 + 1)
Để A nguyên tố thì n > 1
=> n2 + 1 > 1
Mà A = (n - 1)(n2 + 1) là số nguyên tố, chỉ gồm 2 ước là 1 và chính nó
Nên A = n2 + 1; n - 1 = 1
=> n = 2 (TM)
b) n5 - n + 2
= n(n4 - 1) + 2
= n(n2 - 1)(n2 + 1) + 2
= n(n - 1)(n + 1)(n2 + 1) + 2
n(n - 1)(n + 1) là tích 3 số nguyên liên tiếp do n \(\in N\) nên n(n - 1)(n + 1) chia hết cho 3
=> n(n - 1)(n + 1)(n2 + 1) + 2 chia 3 dư 2, không là số chính phương
Vậy ...
dạng này chắc chắc là phải dùng AM-GM ngược dấu rồi :)
Ta có:
\(\dfrac{1+b}{1+4a^2}=1+b-\dfrac{4a^2\left(b+1\right)}{4a^2+1}\ge1+b-\dfrac{4a^2\left(b+1\right)}{4a}=1+b-a\left(b+1\right)\)
Tương tự cho 2 BĐT còn lại ta có:
\(\dfrac{1+c}{1+4b^2}\ge1+c-b\left(c+1\right);\dfrac{1+a}{1+4c^2}\ge1+a-c\left(a+1\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(VT=\dfrac{1+b}{1+4a^2}+\dfrac{1+c}{1+4b^2}+\dfrac{1+a}{1+c^2}\)
\(\ge3+\left(a+b+c\right)-\left(ab+bc+ca\right)-\left(a+b+c\right)\)
\(=3-\dfrac{1}{3}\left(a+b+c\right)^2=3-\dfrac{1}{3}\cdot\dfrac{9}{4}=\dfrac{9}{4}=VP\)
Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{2}\)
\(VT=\left(\dfrac{a}{1+4c^2}+\dfrac{b}{1+4a^2}+\dfrac{c}{1+4b^2}\right)+\left(\dfrac{1}{1+4c^2}+\dfrac{1}{1+4a^2}+\dfrac{1}{1+4b^2}\right)\)
\(VT=\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)+3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\)
Xét \(\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}1+4c^2\ge2\sqrt{4c^2}=4c\\1+4a^2\ge2\sqrt{4a^2}=4a\\1+4b^2\ge2\sqrt{4b^2}=4b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4c^2a}{1+4c^2}\le\dfrac{4c^2a}{4c}=ca\\\dfrac{4a^2b}{1+4a^2}\le\dfrac{4a^2b}{4a}=ab\\\dfrac{4b^2c}{1+4b^2}\le\dfrac{4b^2c}{4b}=bc\end{matrix}\right.\)
\(\Rightarrow\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)\ge\dfrac{3}{2}-\left(ab+bc+ca\right)\) (1)
Xét \(3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}1+4c^2\ge2\sqrt{4c^2}=4c\\1+4a^2\ge2\sqrt{4a^2}=4a\\1+4b^2\ge2\sqrt{4b^2}=4b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4c^2}{1+4c^2}\le\dfrac{4c^2}{4c}=c\\\dfrac{4a^2}{1+4a^2}\le\dfrac{4a^2}{4a}=a\\\dfrac{4b^2}{1+4b^2}\le\dfrac{4b^2}{4b}=b\end{matrix}\right.\)
\(\Rightarrow3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\ge\dfrac{3}{2}\) (2)
Từ (1) và (2)
\(\Rightarrow VT\ge\dfrac{3}{2}-\left(ab+bc+ca\right)+\dfrac{3}{2}\)
\(\Rightarrow VT\ge3-\left(ab+bc+ca\right)\) (3)
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow\dfrac{3}{4}\ge ab+bc+ca\)
\(\Rightarrow3-\dfrac{3}{4}\le3-\left(ab+bc+ca\right)\)
\(\Rightarrow\dfrac{9}{4}\le3-\left(ab+bc+ca\right)\) (4)
Từ (3) và (4)
\(\Rightarrow VT\ge\dfrac{9}{4}\)
\(\Leftrightarrow\dfrac{1+b}{1+4a^2}+\dfrac{1+c}{1+4b^2}+\dfrac{1+a}{1+4c^2}\ge\dfrac{9}{4}\) (đpcm)
Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{2}\)
a) \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\left(đúng\forall a;b\right)\)
Vậy bdt đã được cm
b) \(K=n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)\)
Ta có :
\(\left(n^2+3n\right)^2< \left(n^2+3n\right)^2+2\left(n^2+3n\right)< \left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)
\(\Leftrightarrow\left(n^2+3n\right)^2< \left(n^2+3n\right)^2+2\left(n^2+3n\right)< \left(n^2+3n+1\right)^2\)
Mà \(n^2+3n;n^2+3n+1\) là 2 số tn liên tiếp
\(\Rightarrow K\) không phải số chính phương