Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6
Ta có : a + 4b chia hết cho 13
Suy ra : 10(a + 4b) chia hết cho 13
<=> 10a + 40b chia hết cho 13
<=> [(10a + b) + 39b] chia hết cho 13
Mà b là số tự nhiên và 39 chia ết cho 13 nên 39b chia hết cho 13
Vậy 10a + b chia hết cho 13 (đpcm)
Vì a + 4b chia hết cho 13 nên 10(a+4b) chia hết cho 13
10a+40b chia hết cho 13
(10a+b)+39b chia hết cho 13
Mà 39 chia hết cho 13 nên 39b chia hết cho 13
=> 10a+b chia hết cho 13
Vây: nếu a+4b chia hết cho 13 thì 10a+bchia hết cho 13
Chứng minh với mọi số nguyên dương n thì
3^n + 2 – 2^n + 2 + 3^n – 2^n chia hết cho 10
Giải
3^n + 2 – 2^n + 2 + 3^n – 2^n
= 3^n+2 + 3^n – 2^n + 2 - 2^n
= 3^n+2 + 3^n – ( 2^n + 2 + 2^n )
= 3^n . 3^2 + 3^n – ( 2^n . 2^2 + 2^n )
= 3^n . ( 3^2 + 1 ) – 2^n . ( 2^2 + 1 )
= 3^n . 10 – 2^n . 5
= 3^n.10 – 2^n -1.10
= 10.( 3^n – 2^n-1)
Vậy 3^n+2 – 2^n +2 + 3^n – 2^n chia hết cho 10
đây là toán lớp 6 nha bn
a mk chịu
b
vì 2n-3 : 2n+2
suy ra 2(2n-3) : 2n+2
4n-6: 2n+2
mà 2(2n+2):2n+2
4n+4 :2n+2
4n+ 4 -(4n-6) : 2n+2
.còn lại tự tính
ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)
a) Gọi a+4b là c, 10a+b là d.Ta có:
a+4b= c
10a+b = d
=> 3a+ 12b =3c
10a + b = d
=> 3c+d = 10a+3a+12b+b = 13a + 13b =13(a+b) => 3c + d chia hết cho 13
Mà: 3c+d chia hết cho 13
3c chia hết cho 13
=> d chia hết cho 13 hay 10a+ b chia hết cho 13