K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2022

Câu 1: 

=>n(n+1)=1275

=>n^2+n-1275=0

=>\(n\in\varnothing\)

Câu 2:

a: Gọi d=ƯCLN(2n+1;3n+1)

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯC(2n+1;3n+1)={1;-1}

b: Gọi d=ƯCLN(7n+10;5n+7)

=>35n+50-35n-49 chia hết cho d

=>1 chia hết cho d

=>d=1

=>7n+10 và 5n+7 là hai số nguyên tố cùng nhau

5 tháng 2 2018

3, Gọi ƯCLN(a,b) = d => a=a'.d                              hay a= 5.a'
                                         b=b'.d                                     b=5.b'

                                        (a',b')=1 ( a'>b')                        (a',b') =1 9a'>b')

Mà a.b = ƯCLn(a,b) . BCNN(a,b)

     a'.5.b'.5= 5.105

     a'.5.b'.5= 5.21.5

    => a'.b'.25= 525

=> a'.b' = 525:25

=> a'.b'=21

Ta có bảng :

d55
a'721
b'31
a35105
b15

5

Vậy ta có các cặp (a,b) : (35;150 và (105;5)

5 tháng 2 2018

Bài 4 bạn làm tương tự nha, khai thác ra hết là làm đc

20 tháng 2 2016

Bài 1:  Ký hiệu (abcd) là số tự nhiên có 4 chữ số. 
(abcd) + (abc) + (ab) + (a) = 1111.a + 111.b + 11.c + d 
Vậy 1111.a + 111.b + 11.c + d = 4321 
+ Nếu a < 3 => 111.b + 11.c + d > 2098 (vô lý vì b, c, d < 10) 
+ Nếu a > 3 => vế trái > 4321 
Vậy a = 3 => 111.b + 11.c + d = 988 
+ Nếu b < 8 => 11.c + d > 210 (vô lý vì c, d < 10) 
+ Nếu b > 8 => vế trái > 988 
Vậy b = 8 => 11.c + d = 100 
+ Nếu c < 9 => d > 11 (vô lý) 
Vậy c = 9; d = 1 
=> (abcd) = 3891

3 tháng 2 2019

\(a;\frac{2n+5}{n+3}\)

Gọi \(d\inƯC\left(2n+5;n+3\right)\Rightarrow3n+5⋮d;n+3⋮d\)

\(\Rightarrow2n+5⋮d\)và \(2\left(n+3\right)⋮d\)

\(\Rightarrow\left[\left(2n+6\right)-\left(2n+5\right)\right]⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản

\(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)+5-6}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)

Với \(B\in Z\)để n là số nguyên 

\(\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow n\in\left\{-2;-4\right\}\)

Vậy.....................

13 tháng 1 2021

a, \(\frac{2n+5}{n+3}\)Đặt \(2n+5;n+3=d\left(d\inℕ^∗\right)\)

\(2n+5⋮d\) ; \(n+3⋮d\Rightarrow2n+6\)

Suy ra : \(2n+5-2n-6⋮d\Rightarrow-1⋮d\Rightarrow d=1\)

Vậy tta có đpcm 

b, \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=\frac{-1}{n+3}=\frac{1}{-n-3}\)

hay \(-n-3\inƯ\left\{1\right\}=\left\{\pm1\right\}\)

-n - 31-1
n-4-2