K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2020

MK KO BT MK MỚI HO C LỚP 6

AI HỌC LỚP 6 CHO MK XIN

11 tháng 8 2016

Ta có: \(c=-a-b\), tính được các đại lượng: 

\(a^3+b^3+c^3=a^3+b^3-\left(a+b\right)^3=-3ab\left(a+b\right)\)

\(a^5+b^5+c^5=a^5+b^5-\left(a+b\right)^5=-5ab\left(a^3+b^3\right)-10a^2b^2\left(a+b\right)\)

\(=-5ab\left(a+b\right)\left(a^2+b^2-ab\right)-10a^2b^2\left(a+b\right)\)

2 biểu thức trên bằng nhau nên:

\(5ab\left(a+b\right)\left[a^2+b^2-ab+2ab\right]=3ab\left(a+b\right)\)

\(\Leftrightarrow\orbr{\begin{cases}a+b=0\text{ (1)}\\5\left(a^2+b^2+ab\right)=3ab\text{ (2)}\end{cases}}\text{ }\left(do\text{ }ab\ne0\right)\)

\(\left(2\right)\Leftrightarrow5a^2+5b^2-2ab=0\Leftrightarrow4a^2+4b^2+\left(a-b\right)^2=0\)

\(\Leftrightarrow a=b=0\) --> loại

Vậy \(a+b=0\)

\(\Rightarrow c=-a-b=0\)--> loại

Vậy ko tồn tại a, b, c thỏa giả thiết bài toán

19 tháng 6 2023

a) Có:

 \(a+b+c=0\\\Leftrightarrow\left(a+b+c\right)^2=0\\ \Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\\ \Leftrightarrow2ab+2bc+2ca=-1\\ \Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\\ \Leftrightarrow\left(ab+bc+ca\right)^2=\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\dfrac{1}{4}-0=\dfrac{1}{4} \)

19 tháng 6 2023

câu (b) cho đa thức P (x) = cái gì?

NV
20 tháng 6 2020

\(\frac{\left(1+a\right)^2+b^2+5}{ab+a+4}=\frac{a^2+b^2+2a+6}{ab+a+4}\ge\frac{2ab+2a+6}{ab+a+4}=2-\frac{2}{ab+a+1+3}\ge2-\frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{3}\right)\)

Tương tự: \(\frac{\left(1+b\right)^2+c^2+5}{bc+b+4}\ge2-\frac{1}{2}\left(\frac{1}{bc+b+1}+\frac{1}{3}\right)\) ; \(\frac{\left(1+c\right)^2+c^2+5}{ac+c+4}\ge2-\frac{1}{2}\left(\frac{1}{ac+c+1}+\frac{1}{3}\right)\)

Cộng vế với vế:

\(P\ge\frac{11}{2}-\frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)=\frac{11}{2}-\frac{1}{2}=5\)

\(P_{min}=5\) khi \(a=b=c=1\)

13 tháng 5 2019

Vì vai trò của a,b,c như nhau,không mất tính tổng quát ta có:\(a\le b\le c\le1\Rightarrow\hept{\begin{cases}a-1\le0\\b-1\le0\\c-1\le0\end{cases}}\)

Áp dụng BĐT Cô-si ta có:

\(\frac{a^2}{a^2+b^5+c^5}\le\frac{a^2}{3\sqrt[3]{a^2b^5c^5}}=\frac{a^2}{3bc}\)

Tương tự:\(\frac{b^2}{b^2+a^5+c^5}\le\frac{b^2}{3ac};\frac{c^2}{c^2+a^5+b^5}\le\frac{c^2}{3ab}\)

Cộng vế với vế của 3 BĐT trên ta đươc:

\(\frac{a^2}{a^2+b^5+c^5}+\frac{b^2}{b^2+a^5+c^5}+\frac{c^2}{c^2+a^5+b^5}\le\frac{a^2}{3bc}+\frac{b^2}{3ac}+\frac{c^2}{3ab}=\frac{a^3+b^3+c^3}{3}\)

Xét \(a^3+b^3+c^3\le3\)

\(\Leftrightarrow\left(a^3-1\right)+\left(b^3-1\right)+\left(c^3-1\right)\le0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+a+1\right)+\left(b-1\right)\left(b^2+b+1\right)+\left(c-1\right)\left(c^2+c+1\right)\le0\) (đúng)

Từ đó suy ra:  

\(\frac{a^2}{a^2+b^5+c^5}+\frac{b^2}{b^2+a^5+c^5}+\frac{c^2}{c^2+a^5+b^5}\le\frac{a^3+b^3+c^3}{3}\le\frac{3}{3}=1\left(đpcm\right)\)

Dấu '='xảy ra khi\(\hept{\begin{cases}a=b=c\\abc=1\end{cases}\Leftrightarrow a=b=c=1}\)