Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu hỏi của Trần Anh Đại nếu ko vào được ib vs tui để biết thêm chi tiết!

1. \(\frac{a}{b}\)cùng dấu thì lớn hơn 0
\(\frac{a}{b}\)khác dấu thì bé hơn 0
2. mik không hiểu đề lắm
1:a/b cùng đấu thì lớn hơn o
a/b khác dấu thì bé hơn o
2: có x =a/m=a+a/2m, y =b/m=b+b/2m
Vì x<y =>a<b=>a+a<a+b=>a+a/2m<a+b/2m=>x<z(1)
Vì a<b =>a+b<b+b=>a+b/2m<b+b/2m=>z<y
Từ đó =>x<z<y

Ta có : \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow2\left(ab+bc+ca\right)=-\left(a^2+b^2+c^2\right)\)
Ta lại có : \(\left(a^2+b^2+c^2\right)\ge0\)
\(\Rightarrow-\left(a^2+b^2+c^2\right)\le0\)
\(\Rightarrow2\left(ab+bc+ca\right)\le0\)
\(\Rightarrow ab+bc+ca\le0\left(2>0\right)\)
\(\Rightarrowđpcm\)

Vì \(a,b,c\ne0\)
\(\Rightarrow\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=2\)
\(\Rightarrow P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)
Ta có : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
=> \(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)
=> \(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)
Nếu a + b + c = 0
=> a + b = - c
=> b + c = - a
=> a + c = - b
Khi đó P = \(\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=-1+\left(-1\right)+\left(-1\right)=-3\)
Nếu a + b + c \(\ne0\)
=> \(\frac{1}{b+c}=\frac{1}{a+c}=\frac{1}{a+b}\)
=> b + c = a + c = a + b
=> \(\hept{\begin{cases}b+c=a+c\\b+c=a+b\end{cases}\Rightarrow\hept{\begin{cases}a=b\\a=c\end{cases}}\Rightarrow a=b=c}\)
Khi đó P = \(\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)
=> P = 6
Vậy khi a + b + c = 0 => P = -3
khi a + b + c \(\ne0\) => P = 6

gt: a/(b+c) + b/(c+a) + c/(a+b) = 1
A = a²/(b+c) + b²/(c+a) + c²/(a+b) = a[a/(b+c)] + b[b/(c+a)] + c[c/(a+b)]
= a[a/(b+c) + 1 - 1] + b[b/(c+a) + 1 - 1] + c[c/(a+b) + 1 - 1]
= a.(a+b+c)/(b+c) -a + b.(a+b+c)/(c+a) - b + c.(a+b+c)/(a+b) - c
= (a+b+c)[a/(b+c) + b/(c+a) + c/(a+b)] - (a+b+c)
= (a+b+c) - (a+b+c) = 0
Ta có : Nếu : \(a+b+c=0\) thì từ giả thiết, suy ra :
\(a+b=-c;b+c=-a;a+c=-b\)
Khi đó : \(1=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}=-3\)( vô lý )
\(\Rightarrow a+b+c\ne0\)
Nhân cả hai vế của : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)với : \(a+b+c\ne0\)
ta được : \(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)
\(\Rightarrow\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\left(đpcm\right)\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> a = bk,c = dk
Do đó \(\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\)(1)
\(\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\)(2)
Từ (1) và (2) => \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
b) Vì \(\frac{a}{b}=\frac{c}{d}\)=> \(\frac{a}{c}=\frac{b}{d}\)
=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
a) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\left(k\ne0\right)\)\(\Rightarrow a=ck\); \(b=dk\)
Ta có: \(\frac{2a+3b}{2a-3b}=\frac{2.ck+3.dk}{2.ck-3.dk}=\frac{k\left(2c+3d\right)}{k\left(2c-3d\right)}=\frac{2c+3d}{2c-3d}\)( đpcm )
b) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)
mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)
\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)( đpcm )