Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(-2\right)=4a-2b+c\)
\(f\left(3\right)=9a+3b+c\)
\(f\left(-2\right)+f\left(3\right)=13a+b+2c=0\)
\(\Rightarrow f\left(-2\right)=-f\left(3\right)\Rightarrow f\left(-2\right).f\left(3\right)=-f\left(-2\right)^2\le0\)
p/s: nhớ t nữa ko :>
\(f\left(x\right)=ax^2+bx+c\)
\(f\left(-2\right)=a.\left(-2\right)^2+\left(-2\right).b+c=4a-2b+c\)
\(f\left(3\right)=a.3^2+3.b+c=9a+3b+c\)
\(f\left(3\right)+f\left(-2\right)=4a-2b+c+9a+3b+c=13a+b+2c=0\)
\(\Rightarrow f\left(3\right)=-f\left(-2\right)\Rightarrow f\left(3\right)f\left(-2\right)=-\left[f\left(3\right)\right]^2\le0\left(đpcm\right)\)
1.A)
Thay x=1 ta được
(1-1).f(1)=(1+4).f(1+8)
<=>5.f(9)=0
<=>f(9)=0
suy ra 9 là nghiệm của f(x)
Thay x=-4 ta được:
(-4-1).f(-4)=(-4+4).F(-4+8)
<=>-5.f(-4)=0
<=>f(-4)=0
suy ra -4 là nghiệm của f(x)
Vậy f(x) có ít nhất 2 nghiệm là -4 và 9
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
cho đa thức f (x) thỏa mãn điều kiện x.f(x+1) = (x+2).f(x) .Chứng minh rằng f(x) có ít nhất 2 nghiệm
x.f(x+1) = (x+2).f(x)
Thay x= 0
Ta có :0.f(0+1) = (0+2).f(0)
=>0 = 2.f(0)
=>f(0)=0
Do đó 0 là một nghiệm của đa thức f(x) (1)
Thay x=-2
Ta có: (-2).f(-2+1)=(-2+2).f(-2)
=>(-2).f(-1) = 0 .f(-2)
=>(-2).f(-1)=0
=>f(-1)=0
Do đó -1 là một nghiệm của đa thức f(x) (2)
Vậy từ (1) và (2) =>Đa thức f(x) có ít nhất 2 nghiệm là 0 và -1 (đpcm)
a,ta có:\(a+b+c=0\Rightarrow\)\(a+b=-c;a+c=-b;b+c=-a\)
\(\Rightarrow A=\left(\frac{a+b}{b}\right)\left(\frac{b+c}{c}\right)\left(\frac{c+a}{a}\right)=-1\)
b)
*Ta thấy x = 4 thì ta có (4 – 4).f(4) = (4– 5).f(4 + 2) suy ra f(6) = 0 hay x = 6 là nghiệm của f(x)
* Với x = 5 thì ta có (5 – 4).f(5) = (5– 5).f(5 + 2)suy ra f(5) = 0 hay x = 5 là nghiệm của f(x)
Vậy f(x) có ít nhất hai nghiệm.