K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2016

a) \(A=a^2+b^2\ge\frac{\left(a+b\right)^2}{1+1}=\frac{4}{2}=2\)

A min = 2 khi  a =b =1

b) x = 8 -2y  => \(B=xy=\left(8-2y\right)y=-2y^2+8y-8+8=-2\left(y-2\right)^2+8\le8\)

B max = 8 khi y = 2 ; x = 4

2 tháng 10 2019

Áp dụng BĐT Bunhiacopxki :

\(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{3^2}{2}=\frac{9}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{3}{2}\)

____

\(x+2y=8\Leftrightarrow x=8-2y\)

\(B=xy=y\left(8-2y\right)\)

\(\Leftrightarrow B=-2\left(y^2-4y\right)\)

\(\Leftrightarrow B=-2\left(y^2-4y+4-4\right)\)

\(\Leftrightarrow B=-2\left[\left(y-2\right)^2-4\right]=8-2\left(y-2\right)^2\le8\forall y\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=4\end{matrix}\right.\)

16 tháng 10 2015

Bài 1 bạn phải dùng BDT Bunhiacopxki : ( ax +by )2 <= ( nhỏ hơn bằng ) ( a2 + b)( x2 + Y2 )

Ở đây hệ số của x là 1 nên a là 1.

Ta có: ( x + 2y )<= ( 12 + (căn2)) ( x+ ( căn 2 )2y2 )

=> 1 <= 3 ( x2 + 2y)

=> x2 + 2y>= 1/3

NV
12 tháng 7 2020

\(x+2y=1\Rightarrow x=1-2y\)

a/ \(A=x^2+y^2=\left(1-2y\right)^2+y^2=5y^2-4y+1=5\left(y-\frac{2}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)

\(A_{min}=\frac{1}{5}\) khi \(\left\{{}\begin{matrix}x=\frac{1}{5}\\y=\frac{2}{5}\end{matrix}\right.\)

b/ \(B=\left(1-2y\right)y=-2y^2+y=-2\left(y-\frac{1}{4}\right)^2+\frac{1}{8}\le\frac{1}{8}\)

\(B_{max}=\frac{1}{8}\) khi \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{4}\end{matrix}\right.\)

7 tháng 10 2018

a) \(a+b=2\)

=>  \(b=2-a\)

\(A=a^2+\left(2-a\right)^2=2a^2-4a+4=\left(\sqrt{2}a-\sqrt{2}\right)^2+2\ge2\)

Vậy \(A_{min}=2\)

b)  \(x+2y=8\)

=> \(x=8-2y\)

\(B=y\left(8-2y\right)=8y-2y^2=8-\left(\sqrt{2}y-2\sqrt{2}\right)^2\le8\)

Vậy  \(B_{max}=8\)

DD
20 tháng 7 2021

a) \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+b^2+2ab\)

\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{2^2}{2}=2\)

Dấu \(=\)khi \(a=b=1\).

b) \(\left(x-2y\right)^2\ge0\Leftrightarrow x^2+4y^2\ge4xy\Leftrightarrow x^2+4xy+4y^2\ge8xy\)

\(\Leftrightarrow xy\le\frac{\left(x+2y\right)^2}{8}=\frac{8^2}{8}=8\)

Dấu \(=\)khi \(\hept{\begin{cases}x=4\\y=2\end{cases}}\).

27 tháng 1 2021

a) A = x( 5 - 3x ) = -3x2 + 5x = -3( x2 - 5/3x + 25/36 ) + 25/12

= -3( x - 5/6 )2 + 25/12 ≤ +25/12 ∀ x

Dấu "=" xảy ra khi x = 5/6

Vậy MaxA = 25/12 <=> x = 5/6

27 tháng 1 2021

b) Từ x + y = 7 => x = 7 - y

Ta có : xy = ( 7 - y ).y = 7y - y2 = -( y2 - 7y + 49/4 ) + 49/4 = -( y - 7/2 )2 + 49/4 ≤ 49/4 ∀ y

Dấu "=" xảy ra <=> y = 7/2 => x = 7/2

Vậy Max(xy) = 49/4 <=> x = y = 7/2

( nếu cho x,y dương thì Cauchy nhanh gọn luôn :)) )

18 tháng 12 2015

 

a) Với a =2 

ta có HPT <=>  \(\int^{x+y=2}_{x^2+y^2=2}\Leftrightarrow\int^{x+y=2}_{\left(x+y\right)^2-2xy=2}\Leftrightarrow\int^{x+y=2}_{xy=1}\Rightarrow x=y=1\) S= { (1;1)}

b) \(HPT\Leftrightarrow\int^{x+y=a}_{\left(x+y\right)^2-2xy=6-a^2}\Leftrightarrow\int^{x+y=a}_{xy=a^2-3}\)

x ; y là nghiệm của pt : X2 -aX+(a2-3) =0 => \(\Delta\)=a2 -4a2 +12 = -3a2 +12 >/0 => -2 </a</ 2 \(F=xy+2\left(x+y\right)=a^2-3+2a=\left(a+1\right)^2-4\ge-4\)=> F min = -4 khi  a =-1 (TM)

\(F=xy+2\left(x+y\right)=a^2-3+2a\le4-3+2.2=5\) khi a =2

7 tháng 2 2022

b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz) 

\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)

7 tháng 2 2022

a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky) 

\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)

\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)

Dấu "=" xảy ra <=> x = y = z = 2/3