Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử aabb=n2
<=> a . 103 + a . 102 + b . 10 + b = n2
<=>11 ( 100a + b ) = n2
=>n2 chia hết cho 11
=> n chia hết cho 11
Do n2 có 4 chữ số nên
32 < n < 100
=> n = 33 , n = 44 , n = 55 ,... n = 99
Thử vào thì n = 88 là thỏa mãn
Vậy số đó là 7744
Bạn tham khảo bài giảng cô Huyền về Chữ số tận cùng nhé:
Bài giảng - Tìm chữ số tận cùng - Học toán với OnlineMath
Cái này phải dùng đồng dư thức mà ad , bài giảng trên ko nói nhiều về cái này
Gọi số chính phương đó là aabb
Ta có : \(aabb=n^2\)
\(aabb=1000a+100a+10b+b\)
\(=11\left(100a+b\right)=n^2\)
\(=11\left(99a+a+b\right)=n^2\left(1\right)\)
Do aabb chia hết cho 11 nên a + b chia hết cho 11
=> a + b = 11 \(\left(2\right)\)
Thay \(\left(2\right)\) vào \(\left(1\right)\) ta có :
\(n^2=11^2\left(9a+1\right)\)
=>\(9a+1\) là số chính phương
Thử a = 1 ; 2 ; 3 ; ... ; 9 ta thấy chỉ có 7 thỏa mãn
=> a = 7 => b = 4
Vậy số cần tìm là 7744
.+giả sử aabb=n^2
<=> a . 103 + a . 102 + b . 10 + b = n2
<=>11 ( 100a + b ) = n2
=>n2 chia hết cho 11
=> n chia hết cho 11
Do n2 có 4 chữ số nên
32 < n < 100
=> n = 33 , n = 44 , n = 55 ,... n = 99
Thử vào thì n = 88 là thỏa mãn
Vậy số đó là 7744
giả sử aabb = \(n^2\)
<=>a . \(10^3\) + a .\(10^2\)+b.10+b = \(n^2\)
<=>11(100a+b)= \(n^2\)
=>\(n^2\) chia hết cho 11
=>n chia hết cho 11
do \(n^2\) có 4 chữ số nên
32 < n <100
=>n = 33 , n = 44 , n = 55 ,...n = 99
thử vào thì n = 88 là thỏa mãn
vậy số đó là 7744
Giả sử aabb=n^2
<=> a x10^3+ax10^2+bx10 +b=n^2
<=> 11 (100a+b)=n^2
=> n^2 chia hết cho 11
=> n chia hết cho 11
Do n^2 có 4 chữ số nên
32<n<100
=> n=33, n=44, n=55,...n=99
Thủ vào thì n=88 là thõa mãn
Vậy số đó là 7744
ko phải là 8811 mà phải là 7744 chứ(bởi vì 8811 ko phải là số chính phương
\(\le\)Cách 1 : Gọi các số chính phương phải tìm là n2 = aabb ( a,b \(\in\)N , 1 \(\le\)a \(\le\)9 , 0 \(\le\)b \(\le\)9 ).
Ta có n2 = aabb = 1100a + 11b = 11 . ( 100a + b ) = 11 . ( 99a + a + b ) (1).
Do đó 99a + a + b \(⋮\)11 nên a + b \(⋮\)11 , vậy a + b = 11.
Thay a + b = 11 vào (1) được n2 = 11 . ( 99a + 11 ) = 112 . ( 9a + 1 ) . Do đó 9a + 1 phải là số chính phương .
Thử với a = 1,2,3, ... , 9 chỉ có a = 7 cho 9a + 1 = 82 là số chính phương
Vậy a = 7 , suy ra b = 4 . Ta có 7744 = 112 . 82 .
Cách 2 : Biến đổi n2 = aabb = 11 . ( 100a + b ) = 11 . a0b , do đó a0b = 11k2 ( k \(\in\)N )
Ta có 10011k2 \(\le\)909 \(\Rightarrow\)9/1/11 \(\le\)k2 \(\le\)82/7/11 \(\Rightarrow\)4 \(\le\)k \(\le\)9 .
Lần lượt k = 4,5,6,7,8,9 ta được a0b = 11k2 thứ tự bằng 176 ,275,396,539,704,891, chỉ có số 704 có chữ số hàng chục bằng 0.
Vậy k = 8 và aabb = 11 . 11 . 82 = 882 = 7744.