Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3
=>A chia hết cho 3
A= (2+22+23)+...+(258+259+260)
A=2.(1+2+22)+...+258.(1+2+22)
A=2.7+...+258.7
A=7.(2+...+258)
Vì 7 chia hết cho 7 =>7.(2+...+258) chia hết cho 7
CHIA HẾT CHO 3 :
A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3
=>A chia hết cho 3
Đề sai, viết lại thành:
A= 21+22+23+24+...+259+260
Giải:
A=21+22+23+...............+259+260
A=(21+22+23)+...............+(258+259+260)
A=2.(1+2+22)+............+258.(1+2+22)
A=2.7+.......................+258.7
A=(2+24+..............+258).7 ⋮ 7(đpcm)
a: \(2A=2^2+2^3+...+2^{61}\)
=>A=2^61-2
b: \(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{55}+2^{58}\right)\) chia hết cho 7(1)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)=3\left(2+2^3+...+2^{59}\right)⋮3\left(2\right)\)
Từ (1), (2) suy ra A chia hết cho 21
a+10b chia hết cho 17
=>2a+20b chia hết cho 17(17 và 2 nguyên tố cùng nhau mới có trường hợp này)
cố định đề bài 2a+3b chia hết cho 17
nếu hiệu 2a+20b-(2a+3b) chia hết cho 17 thì 100% 2a+20b chia hết cho 17 cũng như a+10b chia hết cho 17
hiệu là 17b,có 17 chia hết cho 17=>17b chia hết 17
vậy a+10b chia hết cho 17 nếu cái vế kia xảy ra
ngược lai bạn cũng chứng minh tương tự nhá,ko khác đâu
chúc học tốt
vì a và 2a+1 là SCP
đặt \(a+1=m^2;2a+1=n^2\left(n,m\in N\right)\)
vì 2a+1 là số lẻ => n lẻ
=> 2a=\(n^2-1=\left(n-1\right)\left(n+1\right)\)
vì n lẻ => (n-1(n+1) là h 2 số chẵn liên tiếp => \(\left(n-1\right)\left(n+1\right)⋮8\Rightarrow2a⋮8\Rightarrow a⋮4\)
=> a chẵn => a+1 lẻ => m lẻ
mà a=\(m^2-1=\left(m+1\right)\left(m-1\right)\) là tích 2 số chắn liên tiếp => \(a⋮8\) (1)
mặt khác ta có
\(m^2\equiv1;0\left(mod3\right)\)
\(n^2\equiv0;1\left(mod3\right)\)
=> \(m^2+n^2\equiv0;1;2\left(mod3\right)\)
mà \(m^2+n^2=3a+2\equiv2\left(mod3\right)\)
\(\Rightarrow\hept{\begin{cases}m^2\equiv1\left(mod3\right)\\n^2\equiv1\left(mod3\right)\end{cases}}\)
=> \(m^2-1⋮3\Rightarrow a⋮3\) (2)
từ (1) ,(2) => \(a⋮24\) (ĐPCM)
Cho 16a + 17 b chia hết cho 11
Mà ( 16a + 17b ) + ( 17a +16b ) = 33a + 33b = 11(3a + 3b ) chia hết cho 11
=> 17a + 16 b chia hết cho 11
ta thấy 1978 ko chia hết cho 11
78 ko chia hết cho 11 suy ra a chia hết cho 11
2012 ko chia het cho 11
10 ko chia het cho 11
suy ra chắc chắn b chia hết cho 11 ( ĐPCM)
k nha
\(1978a+2012b-78a-10b=1900a+2002\)
ma 2002b chia het cho 11
=>1900a chia het cho 11 nhung 1900 khong chia het cho 11
=>a chia het cho 11 (1)
ta co 78a+10b chia het cho 11 ma 78a chia het cho 11
=>10b chia het cho 11 ma 10 khong chia het cho 11
=>b chia het cho 11 (2)
tu (1) va (2) =>a+b chia het cho 11
a) Vì 11^n =............1 ( bằng 1 số luôn có tận cùng là 1 )
=> 11^9+11^8+11^7+...........+1 = .....1 +........1+........+1 ( có tất cả 9 số 11 và 1 số 1 )
=> A sẽ có tận cùng là 0 ( vì có tất cả 10 số có tận cùng là 1)
=> A chia hết cho 5 ( dựa vào dấu hiệu nhận biết 1 số chia hết cho 5 )
b) B=2+2^2+.......+2^60
=( 2+2^2)+(2^3+2^4)+........+(2^59+2^60)
= 2x(1+2)+2^3+(1+2)+.......+2^59x(1+2)
= 2x3+2^3x3+............+2^59x3
= 3x ( 2 + 2^3 + ...........+ 2^59 )
=>B chia hết cho 3
Can you do next post ?
a,64 b,62