Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Theo đề bài ta có : \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) \((1)\)
Thêm ab vào hai vế của 1 : \(ad+ab< bc+ab\)
\(a(b+d)< b(a+c)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) \((2)\)
Thêm cd vào hai vế của 1 : \(ad+cd< bc+cd\)
\(d(a+c)< c(b+d)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) \((3)\)
Từ 2 và 3 suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
b, Theo câu a ta lần lượt có :
\(\frac{-1}{3}< \frac{-1}{4}\Rightarrow\frac{-1}{3}< \frac{-2}{7}< \frac{-1}{4}\)
\(\frac{-1}{3}< \frac{-2}{7}\Rightarrow\frac{-1}{3}< \frac{3}{10}< \frac{-2}{7}\)
\(\frac{-1}{3}< \frac{-3}{10}\Rightarrow\frac{-1}{3}< \frac{-4}{13}< \frac{-3}{10}\)
Vậy : \(\frac{-1}{3}< \frac{-4}{13}< \frac{-3}{10}< \frac{-2}{7}< \frac{-1}{4}\)
a. ta có a\b < c\d nên
ad < bc
ad+ab < bc+ba
a( d+b) < b( c+a)
a\b < a+c\b+d (1)
ad<bc
ad +cd < bc+cd
d (a+c) < c(b+d)
a+c\b+d< c\d (2)
Từ 1 và 2 suy ra a\b < a+c\b+d < c\d
b. ta có -1\3 < -1\4
nên -1\3 < -2\7 < -3\11 < -4\15 < -1\4
c. Số hữu tỉ âm nhỏ hơn số tự nhiên là đúng
1.
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2.
Ta có: a(b + n) = ab + an (1)
b(a + n) = ab + bn (2)
Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)
Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)
Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)
Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)
Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)
1
a) Vì \(\dfrac{a}{b}< \dfrac{c}{d}\)
\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\)
\(\Rightarrow ad< bc\)
2
b) Ta có : \(\dfrac{-1}{3}=\dfrac{-16}{48};\dfrac{-1}{4}=\dfrac{-12}{48}\)
Ta có dãy sau : \(\dfrac{-16}{48};\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48};\dfrac{-12}{48}\)
Vậy 3 số hữu tỉ xen giữa \(\dfrac{-1}{3}\) và \(\dfrac{-1}{4}\) là :\(\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48}\)
1a ) Ta có : \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)
\(\Leftrightarrow\) \(\dfrac{ad}{bd}\) < \(\dfrac{bc}{bd}\) \(\Rightarrow\) ad < bc
1b ) Như trên
2b) \(\dfrac{-1}{3}\) = \(\dfrac{-16}{48}\) ; \(\dfrac{-1}{4}\) = \(\dfrac{-12}{48}\)
\(\dfrac{-16}{48}\) < \(\dfrac{-15}{48}\) <\(\dfrac{-14}{48}\) < \(\dfrac{-13}{48}\) < \(\dfrac{-12}{48}\)
Vậy 3 số hữu tỉ xen giữa là.................
a) Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
\(\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
Từ ad < bc
\(\Rightarrow ad+cd< bc+cd\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{c}{d}>\frac{a+c}{b+d}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
b) \(-\frac{1}{3}=-\frac{16}{48}< -\frac{15}{48}< -\frac{14}{48}< -\frac{13}{48}< -\frac{12}{48}=-\frac{1}{4}\)
Vậy 3 số hữu tỉ xen giữa \(-\frac{1}{3}và-\frac{1}{4}\)là \(-\frac{15}{48};-\frac{14}{48};-\frac{13}{48}\)
Em có cách giải này, nhờ mí anh chị hay bạn xem zùm e, có j sai sửa giúp e nha!
Do a/b < c/d và b>0 ; d>0 suy ra ad< bc ( 1)
Cộng thêm ad vào 2 vế của ( 1) ta được:
ad + ad < bc + ad
=> a( b+d) < b ( a+ c )
=> a/b < a+c/b+c ( 2)
Cộng thêm cd vào 2 vế của ( 2) ta được:
ad + cd < bc + cd
=> ( a+ c) b < ( b+ d ) c
=> a+c/b+d < c/d ( 3)
Từ ( 2) và ( 3) ta có: a/b < a+c/b+d < c/d hay x< z< y
b) Ta có:
-1/5 < -1/6 => -1/5 < -2/11 < -1/6
-1/5 < -2/11 => -1/5 < - 3/16 < -2/11
-1/5 < -3/16 => -1/5 < -4/21 < -3/16
-1/5 < -4/21 => -1/5 < -4/21 < -3/16
Vậy -1/5 < -4/21 < -3/16 < -2/11 < -1/6
Nhờ mấy ah cj xem zùm rùi cho em biết còn thiếu gì ko! Thanks nhìu ạ <3
Ta có : \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\) => ad < bc (1)
Thêm ab và cả hai vế của (1) :
ad + ab < bc + ab
a(b+d) < b(a+c)
=> \(\dfrac{a}{b}\) < \(\dfrac{a+c}{b+d}\) (2)
Thêm cd vào hai vế của (1) :
ad + cd < bc + cd
d( a+c) < c( b+d )
=> \(\dfrac{a+c}{b+d}\) < \(\dfrac{c}{d}\) (3)
Từ (2) và (3) ta có : \(\dfrac{a}{b}\) < \(\dfrac{a+c}{b+d}\) < \(\dfrac{c}{d}\)
\(a,\frac{a}{b}< \frac{c}{d}=>\frac{ad}{bd}< \frac{bc}{bd}=>ad< bc\left(đpcm\right)\)
\(b,ad< bc=>\frac{ad}{bd}< \frac{bc}{bd}=>\frac{a}{b}< \frac{c}{d}\left(đpcm\right)\)