: a/ Cho 2 số hữu tỉ a/b và c/d với b > 0; d > 0.

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2019

a, Theo đề bài ta có : \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)                                                     \((1)\)

Thêm ab vào hai vế của 1  :          \(ad+ab< bc+ab\)

                                                  \(a(b+d)< b(a+c)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)        \((2)\)

Thêm cd vào hai vế của 1 :           \(ad+cd< bc+cd\)

                                                  \(d(a+c)< c(b+d)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)           \((3)\)

Từ 2 và 3 suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

b, Theo câu a ta lần lượt có :

\(\frac{-1}{3}< \frac{-1}{4}\Rightarrow\frac{-1}{3}< \frac{-2}{7}< \frac{-1}{4}\)

\(\frac{-1}{3}< \frac{-2}{7}\Rightarrow\frac{-1}{3}< \frac{3}{10}< \frac{-2}{7}\)

\(\frac{-1}{3}< \frac{-3}{10}\Rightarrow\frac{-1}{3}< \frac{-4}{13}< \frac{-3}{10}\)

Vậy : \(\frac{-1}{3}< \frac{-4}{13}< \frac{-3}{10}< \frac{-2}{7}< \frac{-1}{4}\)

15 tháng 8 2015

a.  ta có a\b < c\d nên

    ad < bc

    ad+ab < bc+ba                 

    a( d+b) < b( c+a)

    a\b < a+c\b+d    (1)

    ad<bc

   ad +cd < bc+cd

   d (a+c) < c(b+d)

   a+c\b+d< c\d     (2)

   Từ 1 và 2 suy ra     a\b < a+c\b+d < c\d

b. ta có -1\3 < -1\4

    nên  -1\3 < -2\7 < -3\11 < -4\15 < -1\4

c. Số hữu tỉ âm nhỏ hơn số tự nhiên là đúng

7 tháng 7 2017

1.

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)  (1)

Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\)  (2)

Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

2.

Ta có: a(b + n) = ab + an (1)

           b(a + n) = ab + bn (2)

Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)

Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)

Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)

Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)

Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)

8 tháng 6 2017

1

a) Vì \(\dfrac{a}{b}< \dfrac{c}{d}\)

\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\)

\(\Rightarrow ad< bc\)

2

b) Ta có : \(\dfrac{-1}{3}=\dfrac{-16}{48};\dfrac{-1}{4}=\dfrac{-12}{48}\)

Ta có dãy sau : \(\dfrac{-16}{48};\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48};\dfrac{-12}{48}\)

Vậy 3 số hữu tỉ xen giữa \(\dfrac{-1}{3}\)\(\dfrac{-1}{4}\) là :\(\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48}\)

1a ) Ta có : \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)

\(\Leftrightarrow\) \(\dfrac{ad}{bd}\) < \(\dfrac{bc}{bd}\) \(\Rightarrow\) ad < bc

1b ) Như trên

2b) \(\dfrac{-1}{3}\) = \(\dfrac{-16}{48}\) ; \(\dfrac{-1}{4}\) = \(\dfrac{-12}{48}\)

\(\dfrac{-16}{48}\) < \(\dfrac{-15}{48}\) <\(\dfrac{-14}{48}\) < \(\dfrac{-13}{48}\) < \(\dfrac{-12}{48}\)

Vậy 3 số hữu tỉ xen giữa là.................

23 tháng 5 2017

a) Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

Từ ad < bc

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{c}{d}>\frac{a+c}{b+d}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

b) \(-\frac{1}{3}=-\frac{16}{48}< -\frac{15}{48}< -\frac{14}{48}< -\frac{13}{48}< -\frac{12}{48}=-\frac{1}{4}\)

Vậy 3 số hữu tỉ xen giữa \(-\frac{1}{3}và-\frac{1}{4}\)\(-\frac{15}{48};-\frac{14}{48};-\frac{13}{48}\)
 

Em có cách giải này, nhờ mí anh chị hay bạn xem zùm e, có j sai sửa giúp e nha!

   Do a/b < c/d và b>0 ; d>0 suy ra ad< bc    ( 1)

  Cộng thêm ad vào 2 vế của ( 1) ta được:

ad + ad < bc + ad

 => a( b+d) < b ( a+ c )

=> a/b < a+c/b+c    ( 2)

Cộng thêm cd vào 2 vế của ( 2) ta được:

   ad + cd < bc + cd

=> ( a+ c) b < ( b+ d ) c

=> a+c/b+d < c/d     ( 3) 

Từ ( 2) và ( 3) ta có: a/b < a+c/b+d < c/d hay x< z< y 

b)   Ta có: 

  -1/5 < -1/6 => -1/5 < -2/11 < -1/6 

-1/5 < -2/11 => -1/5 < - 3/16 < -2/11 

-1/5 < -3/16 => -1/5 < -4/21 < -3/16 

-1/5 < -4/21 => -1/5 < -4/21 < -3/16 

Vậy -1/5 < -4/21 < -3/16 < -2/11 < -1/6 

Nhờ mấy ah cj xem zùm rùi cho em biết còn thiếu gì ko! Thanks nhìu ạ <3 

     

26 tháng 5 2017

Ta có : \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\) => ad < bc (1)

Thêm ab và cả hai vế của (1) :

ad + ab < bc + ab

a(b+d) < b(a+c)

=> \(\dfrac{a}{b}\) < \(\dfrac{a+c}{b+d}\) (2)

Thêm cd vào hai vế của (1) :

ad + cd < bc + cd

d( a+c) < c( b+d )

=> \(\dfrac{a+c}{b+d}\) < \(\dfrac{c}{d}\) (3)

Từ (2) và (3) ta có : \(\dfrac{a}{b}\) < \(\dfrac{a+c}{b+d}\) < \(\dfrac{c}{d}\)

6 tháng 7 2016

\(a,\frac{a}{b}< \frac{c}{d}=>\frac{ad}{bd}< \frac{bc}{bd}=>ad< bc\left(đpcm\right)\)

\(b,ad< bc=>\frac{ad}{bd}< \frac{bc}{bd}=>\frac{a}{b}< \frac{c}{d}\left(đpcm\right)\)

9 tháng 7 2016

gggggggggggggggggggggggg