Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Theo định lí tỉ số lượng giác của hai góc phụ nhau, ta có:
\(\sin1=\cos89....\sin89=\cos1\)
Vậy \(A=0\)
b) Theo định lí tỉ số lượng giác của 2 góc phụ nhau, ta có:
\(\tan1=\cot89...\tan2=\cot88...\)
\(\Rightarrow B=\tan45\cdot\tan46\cdot\cot46\cdot...\cdot\tan89\cdot\cot89\)
Mà \(\tan\lambda\cdot\cot\lambda=1\)
\(\Rightarrow B=\tan45\cdot1=1\)
c) Bạn làm tương tự dựa vào CT \(\sin^2\lambda+\cos^2\lambda=1\)
\(\cot\alpha=\dfrac{1}{2}\)
\(\sin\alpha=\dfrac{kề}{\sqrt{5}kề}=\dfrac{\sqrt{5}}{5}\)
\(\cos\alpha=\sqrt{1-\dfrac{5}{25}}=\dfrac{2\sqrt{5}}{5}\)
\(a,A=\left(\cos^220^0+\cos^270^0\right)+\left(\cos^240^0+\cos^250^0\right)\\ A=\left(\cos^220^0+\sin^220^0\right)+\left(\cos^240^0+\sin^240^0\right)=1+1=2\\ b,B=\left(\cos^2\alpha\right)^3+\left(\sin^2\alpha\right)^3+3\sin^2\alpha\cdot\cos^2\alpha\cdot\left(\sin^2\alpha+\cos^2\alpha\right)\\ B=\left(\sin^2\alpha+\cos^2\alpha\right)^3=1^3=1\)
\(\cos\alpha=\sqrt{1-\dfrac{9}{25}}=\dfrac{4}{5}\)
a: \(A=\cos\alpha\cdot\sin^3\alpha+\cos^3\alpha\cdot\sin\alpha\)
\(=\dfrac{4}{5}\cdot\dfrac{27}{125}+\dfrac{64}{125}\cdot\dfrac{3}{5}\)
\(=\dfrac{4\cdot27+64\cdot3}{625}\)
\(=\dfrac{300}{625}=\dfrac{12}{25}\)