K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 7 2017

Lời giải:

Dễ tìm được \(A(0,5);B(1,4)\) là hai điểm cực trị của đồ thị \((C)\)

Xét điểm $I(a,b)$ sao cho \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IO}=\overrightarrow{0}\)

\(\Leftrightarrow(-a,5-b)+(1-a,4-b)+(-a,-b)=0\)

\(\Rightarrow \left\{\begin{matrix} a=\frac{1}{3}\\ b=3\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \overrightarrow{IA}=(\frac{-1}{3},2)\\ \overrightarrow{IB}=(\frac{2}{3},1)\\ \overrightarrow{IO}=(\frac{-1}{3},-3)\end{matrix}\right.\)

Ta có:

\(P=(\overrightarrow{MI}+\overrightarrow{IO})(\overrightarrow{MI}+\overrightarrow{IA})+(\overrightarrow{MI}+\overrightarrow{IB})(\overrightarrow{MI}+\overrightarrow{IA})+(\overrightarrow{MI}+\overrightarrow {IO})(\overrightarrow{MI}+\overrightarrow{IB})\)

\(P=3MI^2+2\overrightarrow{MI}(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC})+\overrightarrow{IA}.\overrightarrow{IO}+\overrightarrow{IA}.\overrightarrow{IB}+\overrightarrow{IB}.\overrightarrow{IO}\)

\(P=3MI^2+\overrightarrow{IA}.\overrightarrow{IO}+\overrightarrow{IA}.\overrightarrow{IB}+\overrightarrow{IB}.\overrightarrow{IO}=3MI^2-\frac{22}{3}\)

Để P min thì \(MI_{\min}\) hay $I$ là hình chiếu của $M$ lên mp \(x+3y+7=0\)

Từ đây dễ dàng tìm được \(M(\frac{-13}{10};\frac{-19}{10})\)

AH
Akai Haruma
Giáo viên
6 tháng 7 2017

Lời giải:

Gọi \(I(a,b,c)\) là một điểm thỏa mãn \(\overrightarrow{IA}+\overrightarrow{IB}=0\)

\(\Rightarrow (3-a,-1-b,2-c)+(1-a,-5-b,-c)=0\Rightarrow I(2,-3,1)\)

Lại có:

\(P=\overrightarrow{MA}.\overrightarrow{MB}=(\overrightarrow{MI}+\overrightarrow{IA})(\overrightarrow{MI}+\overrightarrow{IB})=MI^2+\overrightarrow{IB}.\overrightarrow{IA}\)

\(\Leftrightarrow P=MI^2-6\)

Để \(P_{\min}\Leftrightarrow MI_{\min}\), điều đó đồng nghĩa với việc \(M\) là hình chiếu của $I$ lên mặt phẳng $(P)$

Gọi \(M(a,b,c)\Rightarrow \overrightarrow{IM}=(a-2,b+3,c-1)=k(2,-1,2)\)

\(\Rightarrow \frac{a-2}{2}=\frac{b+3}{-1}=\frac{c-1}{2}\)

Mặt khác, \(2a-b+2c+9=0\) nên \(a=-2,b=-1,c=-3\)

Vậy \(M(-2,-1,-3)\)

28 tháng 5 2018

sao cho cái j có gtri nhỏ nhất v

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

Lời giải:

a)

\(\overrightarrow{x}=\overrightarrow{u}-\overrightarrow{v}=(1-2, 2-2,3-(-1))=(-1,0,4)\)

b)

\(\overrightarrow{x}=\overrightarrow{u}-\overrightarrow{v}+2\overrightarrow{w}=(1-2+2.4,2-2+2.0; 3-(-1)+2(-4))\)

\(=(7, 0, -4)\)

c)

\(\overrightarrow{x}=2\overrightarrow{u}+4\overrightarrow{v}-\overrightarrow{w}=(2.1+4.2-4, 2.2+4.2-0, 2.3+4.(-1)-(-4))\)

\(=(6,12,6)\)

d)

\(2\overrightarrow{x}=3\overrightarrow{u}+\overrightarrow{w}=3(1,2,3)+(4,0,-4)=(3.1+4, 3.2+0,3.3+(-4))\)

\(=(7,6,5)\Rightarrow \overrightarrow{x}=(\frac{7}{2}, 3, \frac{5}{2})\)

e)

\(3\overrightarrow{x}=-2\overrightarrow{u}-\overrightarrow{v}+\overrightarrow{w}=-2(1,2,3)-(2,2,-1)+(4,0,-4)\)

\(=(-2,-4,-6)-(2,2,-1)+(4,0,-4)=(-2-2+4,-4-2+0,-6-(-1)+(-4))\)

\(=(0,-6,-9)\Rightarrow \overrightarrow{x}=(0,-2,-3)\)

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

trần phi yến: bạn xem lại quy tắc cộng trừ vecto trong sách là sẽ làm đc.

NV
15 tháng 2 2020

\(M\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(-1-x;3-y;-1-z\right)\\\overrightarrow{MB}=\left(4-x;-2-y;4-z\right)\end{matrix}\right.\)

\(9MA^2=4MB^2\Leftrightarrow9\left(x+1\right)^2+9\left(y-3\right)^2+9\left(z+1\right)^2=4\left(x-4\right)^2+4\left(y+2\right)^2+4\left(z-4\right)^2\)

\(\Leftrightarrow\left(x+5\right)^2+\left(y-7\right)^2+\left(z+5\right)^2=108\)

\(2\overrightarrow{MA}-\overrightarrow{MB}=-\left(x+6;y-8;z+6\right)\)

Gọi \(\overrightarrow{u}=\left(x+5;y-7;z+5\right)\) ; \(\overrightarrow{v}=\left(1;-1;1\right)\)

Theo BĐT vecto ta có:

\(\left|\overrightarrow{u}+\overrightarrow{v}\right|\le\left|\overrightarrow{u}\right|+\left|\overrightarrow{v}\right|\Rightarrow P=\left|\overrightarrow{u}+\overrightarrow{v}\right|\le\sqrt{108}+\sqrt{3}=7\sqrt{3}\)

27 tháng 5 2017

Hình giải tích trong không gian

27 tháng 5 2017

\(\overrightarrow{m}=\left(-4;-2;3\right);\overrightarrow{n}=\left(-9;2;1\right)\)

27 tháng 4 2017

Hỏi đáp Toán

26 tháng 5 2017

a) \(\overrightarrow{a}.\overrightarrow{b}=6\left(1-c\right)\)

b) \(\overrightarrow{a}.\overrightarrow{b}=-21\)

c) \(\overrightarrow{a}.\overrightarrow{b}=0\)