Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\frac{4}{x+2}+\frac{3}{x-2}+\frac{5x+2}{4-x^2}\left(x\ne\pm2\right)\)
\(=\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{5x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4x-8+3x+6-5x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{2x}{\left(x-2\right)\left(x+2\right)}\)
f) \(x^2+1-\frac{x^4-3x^2+2}{x^2-1}\)
\(=x^2+1-\frac{\left(x^2-2\right)\left(x^2-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=x^2+1-\frac{\left(x^2-2\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=x^2+1-\left(x^2-2\right)\)
\(=x^2+1-x^2+2\)
\(=3\)
Ta có: \(\left(x+y\right)^2=\left(x-y\right)^2+4xy\)
Thay số ta được:
\(\left(x+y\right)^2=4^2+4.5\)
\(\Rightarrow\left(x+y\right)^2=16+20=36\)
\(\Rightarrow x+y=\sqrt{36}=6\)
Vậy: \(x+y=6\)
tu x-y=4suy ra y=x-4
thay vao xy=5suy ra x(x-4)=5
suy ra x^2-4x+4=9
suy ra (x-2)^2=9
suy ra x-2=+-3
vi x<0 suy ra x=-3+2=-1
suy ra y=x-4=-1-4=-5
suy ra x+y=-1+-5=-6
A=(\(\frac{x^3-1}{x\left(x-1\right)}\)-\(\frac{x^3-1}{x\left(x+1\right)}\)) : \(\frac{2\left(x^2-2x+1\right)}{\left(x-1\right)\left(x+1\right)}\)ĐKXĐ: x\(\ne\) -1, 1
A=\(\frac{1}{x\left(x+1\right)}\)x \(\frac{\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x-1\right)}\)
A=\(\frac{1}{2x^2-2x}\)
B=\(\frac{x+1}{x-2}\)-\(\frac{2x}{x+2}\)-\(\frac{2+5x}{x^2-4}\)ĐKXĐ : x\(\ne\)2, -2
B=\(\frac{x+1}{x-2_{ }}\)-\(\frac{2x}{x+2}\)-\(\frac{2+5x}{\left(x-2\right)\left(x+2\right)}\)
B=\(\frac{x^2+3x+2}{\left(x-2\right)\left(x+2\right)}\)-\(\frac{2x^2-4x}{\left(x-2\right)\left(x+2\right)}\)-\(\frac{2+5x}{\left(x-2\right)\left(x+2\right)}\)
B=\(\frac{-x^2+2x}{\left(x-2\right)\left(x+2\right)}\)
B=\(\frac{-x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
B=\(\frac{-x}{x+2}\)
a, - Để biểu thức trên được xác định thì : \(x^2+x+1\ne0\)
Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Vậy biểu thức luôn được xác định với mọi x .
b, - Để biểu thức trên được xác định thì : \(4x^2+2x+3\ne0\)
Mà \(4x^2+2x+3=\) \(x^2+\frac{x}{2}+\frac{3}{4}=\left(x+\frac{1}{4}\right)^2+\frac{11}{16}>0\)
Vậy biểu thức luôn được xác định với mọi x .
d, - Để biểu thức trên có nghĩa thì : \(3t^2-t+1\ne0\)
Mà \(3t^2-t+1=3\left(t^2-\frac{t}{3}+\frac{1}{3}\right)=3\left(\left(t-\frac{1}{6}\right)^2+\frac{11}{36}\right)>0\)
Vậy biểu thức luôn được xác định với mọi x .