K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2018

Đặt các điểm như hình vẽ sau:

A B C D E F G H I K x x+3 3x+1 y z

Xét tứ giác ABCD: AB//CD => Tứ giác ABCD là hình thang

Ta thấy: E;I;G thuộc đoạn AD: AE=EG=GI=ID

=> G là trung điểm AD và EI; E là trung điểm AG; I là trung điểm DG

Tương tự ta có: H là trung điểm BC và FK; F là trung điểm BH; K là trung điểm HC

Hình thang ABCD (AB//CD) có: G và H lần lượt là trung điểm của AD và BC

=> GH là đường trung bình hình thang ABCD => GH // AB // CD 

Từ đó có: 2 tứ giác ABHG và GHCD là hình thang

Dễ thấy: EF là đường trung bình hình thang ABHG => EF = (AB+HG)/2

\(\Rightarrow x+3=\frac{4x+1}{2}\Rightarrow x=\frac{5}{2}\)

Đồng thời EF // GH. Tương tự: IK // GH => EF // IK => Tứ giác EFKI là hình thang

Hình thang EFKI có: G;H là trung điểm của EI và FK (cmt) => GH là đường trung bình hình thang EFKI

=> GH = (EF+IK)/2 \(\Rightarrow3x+1=\frac{x+y+3}{2}\Rightarrow y=\frac{23}{2}\)(Do x=5/2)

Lại có: IK là đường trung bình hình thang GHCD => IK = (GH+CD)/2

\(\Rightarrow y=\frac{3x+z+1}{2}\Rightarrow z=\frac{29}{2}\)(Do x=5/2 và y=23/2)

Vậy \(x=\frac{5}{2};y=\frac{23}{2};z=\frac{29}{2}.\)

a: \(=\left(2x-y\right)\left(x+y+3x-y\right)+\left(2x-y\right)\)

\(=\left(2x-y\right)\left(4x+1\right)\)

b: \(=abc\left(b^2c-abc+bc^2-a\right)\)

d: \(=x^2\left(2x+3\right)+2x+3=\left(2x+3\right)\left(x^2+1\right)\)

11 tháng 7 2017

c)\(x^3+3xy+y^3\)

\(=x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=\left(x^2-xy+y^2\right)+3xy\)

\(=x^2-xy+y^2+3xy\)

\(=x^2+2xy+y^2=\left(x+y\right)^2\)

\(=1^2=1\)

11 tháng 7 2017

d) \(x^3-3xy-y^3\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=\left(x^2+xy+y^2\right)-3xy\)

\(=x^2-2xy+y^2\)

\(=\left(x-y\right)^2\)

\(=1^2=1\)

@Đoàn Đức Hiếu lm a,b đi nhé

18 tháng 8 2017

chuyển về dạng nguyên thể rồi tính thể chất khối lượng sau đó quay về đang tìm mũ của nhiều số làm ra rồi thì dễ lắm bạn ạ k minh nha

18 tháng 8 2017

a)\(\left(x^2-2\right)\left(x^2+2x+2\right)\)

b)\(\left(x-1\right)\left(2x+1\right)\left(3x+7\right)\)

c)\(-2\left(x-4\right)\left(2x+1\right)\)

d)\(\left(x-5\right)\left(4x+1\right)\)

e)\(3\left(x-2\right)\left(3x-2\right)\)

g)\(2\left(a-b\right)^2\)

h)\(\left(xy-3\right)\left(5y^2-2z\right)\)

i)\(\left(4x+1\right)\left(2x-y\right)\)

l)\(abc^2\left(b-a\right)\left(b+c\right)\)

m)\(\left(x-y\right)\left(y-z\right)\left(x-z\right)\)

5 tháng 10 2021

\(3,=\left(x-y\right)^3+\left(y-x+x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3+\left(y-x\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-x+x-z\right)+\left(x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3-\left(x-y\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-z\right)-\left(z-x\right)^3+\left(z-x\right)^3\\ =3\left(y-x\right)\left(x-z\right)\left(y-z\right)\)

\(4,=\left(x^4+3x^3-x^2\right)+\left(3x^3+9x^2-3x\right)-\left(x^2+3x-1\right)\\ =x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\\ =\left(x^2+3x-1\right)\left(x^2+3x-1\right)\\ =\left(x^2+3x-1\right)^2\)

3 tháng 11 2021

a) Áp dụng định lý Ta-let vào \(\Delta\)ABC, ta có:

\(\frac{AE}{BE}=\frac{AF}{FC}\)

\(\rightarrow\frac{6}{3}=\frac{x}{4}\)

\(\rightarrow x=8\)

Gọi AD là a, ta có:

\(\frac{AF}{FC}=\frac{AD}{DC}\)

\(\rightarrow\frac{6}{3}=\frac{a}{6}\)

\(\rightarrow a=12\)

Vậy:

\(\frac{AE}{BE}=\frac{AD}{BD}\)

\(\rightarrow\frac{6}{3}=\frac{12}{y}\)

\(\rightarrow y=6\)

Áp dụng hệ quả TaLet vào \(\Delta\)ABC, ta có:

\(\frac{EF}{BC}=\frac{AE}{BE}\)

\(\rightarrow\frac{z}{12}=\frac{6}{3}\)

\(\rightarrow z=24\)

26 tháng 11 2016

1 a

2c

3b

4d

5c

6c

b: \(=3x^{n-2+n+2}-3x^{n-2}y^{n+2}+3x^{n-2}y^{n+2}-y^{n+2+n-2}\)

\(=3x^{2n}-y^{2n}\)

c: \(=a^3+ab^2+ac^2-a^2b-abc-a^2c+a^2b+b^3+bc^2-ab^2-b^2c-abc+a^2c+b^2c+c^3-abc-bc^2-ca^2\)

\(=a^3+b^3+c^3-3acb\)

=a, (x-3)(x+3)-(x-7)(x+7)= x2 - 9 - x2 + 7

= -2

b, (4x-5)2+(3x-2)2-2(4x+5)(3x-2)= (4x-5)2 - 2(4x+5)(3x-2) + (3x-2)2 

= ( 4x - 5 - 3x + 2 )2 

= ( x - 3 )2

c, 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2=  2(3x-y)(3x+y)+(3x-y)2+(3x+y)2 

= (3x-y)2+ 2(3x-y)(3x+y)+ (3x+y)2 

= ( 3x - y + 3x + y )2 

= ( 6x )2 

= 36x2 

d, (x-y+z)2+(z-y)2+2(x-y+z+2(x-y+z)(y-z-y+z)(y-z)

27 tháng 8 2019

1, rút gọn

a, (x-3)(x+3)-(x-7)(x+7)

= x^2 - 9 - (x^2 - 49)

= x^2 - 9 - x^2 + 49

= 40

b, (4x-5)2+(3x-2)2-2(4x+5)(3x-2)

= 16x^2 - 40x + 25 + 9x^2 - 12x + 4 - 2(12x^2 - 8x + 15x - 10)

= 25x^2 - 52x + 29 - 24x^2 + 16x - 30x + 20

= x^2 - 66x + 49

c, 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2

= 2(9x^2 - y^2) + 9x^2 - 6xy + y^2 + 9x^2 + 6xy + y^2

= 18x^2 - 2y^2 + 18x^2 + 2y^2

= 36x^2

d, (x-y+z)2+(z-y)2+2(x-y+z+2(x-y+z)(y-z-y+z)(y-z)

= dài vl