Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E
Ta thấy AB = BD (GT) ; AC=CE (GT)
Mà AB = AC ( do tam gaics ABC cân tại A)
Nên BD=CE
Ta thấy ^DBA = 180 dộ - ^ABC
^ECA = 180 độ - ^ACB
mà ^ABC = ^ ACB suy ra ^DBA = ^ ECA
Xét tam giác ABD và tam giác ACE có:
AB = AC
^BDA = ^ECA (cmt)
BD = CE ( cmt )
suy ra tam giác ABD = tam giác ACE (c.g.c)
Suy ra ^D = ^ E ( 2 cạnh tương ứng)
Suy ra tam giac ADE cân tại A
+, ta thấy DE = BD + BC + CE
MÀ BD =AB ( GT ); CE= AC (GT)
Suy ra DE = AB+ BC+AC
b, Tam giác ABC có: ^BAC + ^ABC+^ACB = 180
32 + ^ABC + ^ ACB =180
^ABC + ^ACB = 180-32=158
Suy ra ^ABC = ^ ACB = 158 :2 = 79
Mà ^ABC là góc ngoài của tam giac ABD cân tại b
Nên ^D=79:2=39,5
Suy ra D =^E= 39,5( tam giác ADE cân)
SUY ra DAC= 180-39,5-39,5=101
a)áp dụng định lý pitago ta có BC^2=AB^2+AB^2=8^2+6^2=100
=>BC=10
b ) Ta có AB = AD ( gt )
=> CA là đường trung tuyến của BD
CA vuông góc với BD ( t/g ABC vuông tại A )
=> Ca là đường cao của BD
mà CA là đường trung tuyến của BD ( chứng minh trên )
t/g BCD cân tại C
=> CA cũng là p/g của t/g ABC
=> góc BCA = góc DCA
BC = CD ( t/g BCD cân tại C )
EC : cạnh chung
suy ra t/g BEC = t/g DEC ( c - g - c )
c ) Trên trung tuyến CA có CE/AC = 6-2/6 = 2/3
ba đường trung tuyến của t/g BCD đồng quy tại E
=> DE là đường trung tuyến của BC
=> DE đi qua trung điểm BC
D A C B E M F y G 1 2 1 2
VẼ By là tia phân giác của \(\widehat{ABC}\)CẮT AC TẠI G
A) XÉT \(\Delta BAG\)VÀ \(\Delta BEG\)CÓ
\(\widehat{BAG}=\widehat{BEG}=90^o\)
BG LÀ CẠNH CHUNG
\(\widehat{B_1}=\widehat{B_2}\)( LẬP LUẬN)
=>\(\Delta BAG\)=\(\Delta BEG\)( CH-GN)
=>BA = BE
\(\Rightarrow\Delta ABE\)CÂN TẠI B ( ĐPCM)
VÌ \(\Delta BAG\)=\(\Delta BEG\)(CMT)
=> AG = GE
XÉT \(\Delta AGD\)VÀ \(\Delta EGC\)CÓ
\(\widehat{G_1}=\widehat{G_2}\)( ĐỐI ĐỈNH )
AG = GE ( CMT )
\(\widehat{DAG}=\widehat{CEG}=90^o\)
=>\(\Delta AGD\)=\(\Delta EGC\)( G-C-G )
=> AD = EC
TA CÓ
\(BA+AD=BD\)
\(BE+EC=BC\)
MÀ AD = EC(CMT) VÀ \(BA=BE\)(CMT)
=>\(BD=BC\)
=> \(\Delta BDC\)CÂN TẠI B
XÉT \(\Delta BDC\)CÂN TẠI B
\(\Rightarrow\widehat{BCD}=\frac{180^o-\widehat{B}}{2}\left(1\right)\)
XÉT \(\Delta BAE\)CÂN TẠI B
\(\Rightarrow\widehat{BEA}=\frac{180^o-\widehat{B}}{2}\left(2\right)\)
TỪ (1) VÀ (2)
\(\Rightarrow\widehat{BCD}=\widehat{BEA}\)
MÀ HAI GÓC NÀY Ở VỊ TRÍ ĐỒNG VỊ BẰNG NHAU
=>\(AE//CD\)(ĐPCM)
b) vì AE // CD HAY AF // CD \(\Rightarrow\widehat{FAC}=\widehat{DCA}\)( SO LE TROG )
XÉT \(\Delta FAM\)VÀ \(\Delta DCM\)CÓ \(\widehat{FAC}=\widehat{DCA}\)HAY\(\widehat{FAM}=\widehat{DCM};AM=CM\left(GT\right);\widehat{AMF}=\widehat{CMF}\left(DD\right)\)
=>\(\Delta FAM\)=\(\Delta DCM\)(G-C-G)
\(\Rightarrow FM=DM\)
XÉT\(\Delta ADM\)VÀ \(\Delta CFM\)CÓ \(AM=CM\left(GT\right);\widehat{AMD}=\widehat{CMF}\left(GT\right);FM=DM\left(CMT\right)\)
=>\(\Delta ADM\)=\(\Delta CFM\)(C-G-C)
\(\Rightarrow\widehat{DAM}=\widehat{FCM}=90^o\)
mà\(\widehat{FCM}=90^o\)
\(\Rightarrow CF\perp AC\left(ĐPCM\right)\)