A B C D M

CMR:CM là phân giác của ACD

CMR:CD=CA+DB

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016

(BẠN TỰ VẼ HÌNH NHÉ! KHÔNG KHÓ ĐÂU)

a)Xét ΔBMC và ΔDMA

  • Góc AMD= Góc BMC (đối đỉnh)
  • MA=MC(M là trung điểm AC)
  • MB=MD(gt)

Vậy ΔBMC = ΔDMA(c.g.c)

Suy ra Góc DAM= Góc MCB (2 góc tương ứng)

Mà 2 góc nằm ở vị trí so le trong

Nên AD // BC

b) Xét ΔAMB và ΔCMD

  • Góc AMB= Góc CMD(đối đỉnh)
  • MA=MC(M là trung điểm AC)
  • MB=MD(gt)

Vậy ΔAMB = ΔCMD(c.g.c)

Suy ra AB=CD (2 cạnh tương ứng)

Mà AB=AC (ΔABC cân tại A)

Nên CD=CA

Vì CD=CA(cmt)

Nên Δ CAD cân tại C

c) bạn đợi xíu nhé

 
19 tháng 8 2016

 c) có tam giác BMC = tam giác DMA(cmt)

=> BM=DM ( 2 cạnh t/ ứ)

=> M là trung điểm của BD

xét tam giác BDE có

 EM là trung tuyến ứng vs BD ( M là trung điểm của BD)

CI là trung tuyến ứng vs BE ( I là trung điểm của BE)

mà EM giao vs CI tại C

=> C là trọng tâm

=> DC là trung tuyến ứng vs BE

mà CI cũng là đường trung tuyến ứng vs BE(cmt)

=> DC trùng với CI

=> D,C,I thẳng hàng

vậy DC đi qua trung điểm I của BE

thiếu đề bn ơi

4 tháng 2 2019

thiếu gì bn