\(\in\)\(ℕ^∗\)thỏa mãn \(\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có:

ab=c+d

abcd=0

⇒2a(abcd)=0

⇒2a2−2ab−2ac−2ad=0

Do đó:

a2+b2+c2+d2

=a2+b2+c2+d2+2a2−2ab−2ac−2ad

=(a2−2ab+b2)+(a2−2ac+c2)+(a2−2ad+d2)

=(ab)2+(ac)2+(ad)2

Vậy với các số nguyên a, b, c, d thỏa mãn a - b = c + d thì a2 + b2 + c2 + d2 luôn là tổng của ba số chính phương

b) Ta có:

a+b+c+d=0

a+b+c=−d

a2+ab+ac=−da

bcda=a2+ab+ac+bc

bcda=a(a+b)+c(a+b)

bcda=(a+b)(a+c)(1)

Ta lại có:

a+b+c+d=0

a+b+c=−d

ac+bc+c2=−dc

abcd=ac+bc+c2+ab

abcd=c(a+c)+b(a+c)

abcd=(a+c)(b+c)(2)

Ta lại có:

a+b+c+d=0

a+b+c=−d

ab+b2+bc=−db

cadb=ca+ab+b2+bc

cadb=a(b+c)+b(b+c)

cadb=(b+c)(a+b)(3)

Thay (1) , (2) và (3) vào biểu thức ( ab - cd )( bc - da )( ca - db ) ta được:

(abcd)(bcda)(cadb)

=(a+c)(b+c)(a+b)(a+c)(a+b)(b+c)

=(a+c)2.(b+c)2.(a+b)2

=[(a+c)(b+c)(a+b)]2

Vậy với các số nguyên a, b, c, d thỏa mãn a + b + c + d = 0 thì ( ab - cd )( bc - da )( ca - db ) là số chính phương

17 tháng 3 2019

ai giup minh di

5 tháng 4 2019

mk ko bt

20 tháng 4 2019

Hình như là

a/b=2018a/2018b

Vì a/b<c/d

=>2018a/2018b<c/d

=>2018a+c/2018b+d<c+d

23 tháng 2 2017

Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}.bd< \frac{c}{d}.bd\)

\(\Rightarrow ad< bc\)

\(\Rightarrow2002ad< 2002bc\)

\(\Rightarrow2002ad+cd< 2002bc+cd\)

\(\Rightarrow\left(2002a+c\right).d< \left(2002b+d\right).c\)

Chia cả hai vế cho \(\left(2002b+d\right).d\) ta có :

\(\frac{2002a+c}{2002b+d}< \frac{c}{d}\)

Vậy...

23 tháng 2 2017

Vì \(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad< bc\)

\(\Rightarrow2002ad< 2002bc\)

\(\Rightarrow2002ad+cd< 2002bc+cd\)

\(\Rightarrow\left(2002a+c\right)d< \left(2002b+d\right)c\)

\(\Rightarrow\frac{2002a+c}{2002b+d}< \frac{c}{d}\)

Mình chắc chắn 100% luôn. Mong các bạn .

5 tháng 4 2019

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)

\(\Leftrightarrow2018ad< 2018bc\)

\(\Leftrightarrow2018ad+cd< 2018bc+cd\)

\(\Leftrightarrow d\left(2018a+c\right)< c\left(2018b+d\right)\)

\(\Leftrightarrow\frac{2018a+c}{2018b+d}< \frac{c}{d}\left(đpcm\right)\)

15 tháng 4 2019

ta có a/b < c/d 

=> ad<bc 

=> 2018ad < 2018bc

=> 2018ad + cd < 2018bc + cd 

=> ( 2018 a + c ) < c ( 2018 b + d )

=> \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\left(\text{đ}pcm\right)\)

Có \(\frac{a}{b}< \frac{c}{d}=>a.d< c.b\)

<=>2018a.d<2018c.b

<=>2018a.d+c.d<2018c.b+c.d

<=>d(2018a+c)<c(2018b+d)

<=>đpcm

10 tháng 4 2019

\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)

\(\Leftrightarrow2019ad< 2019bc\)

\(\Leftrightarrow2019ad+cd< 2019bc+cd\)

\(\Leftrightarrow d\left(2019a+c\right)< c\left(2019b+d\right)\)

\(\Leftrightarrow\frac{2019a+c}{2019b+d}< \frac{c}{d}\)

12 tháng 3 2017

\(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad>bc\)

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)

\(\Rightarrow ad+cd< bc+cd\)

\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (2)

Từ (1); (2) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)

\(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad=bc\)

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(b-d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

\(\Rightarrow ad+cd< bc+cd\)

\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

Từ ( 1 ) và ( 2 )

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)( đpcm )

AH
Akai Haruma
Giáo viên
29 tháng 10 2024

Lời giải:

Do $\frac{a}{b}< \frac{c}{d}\Rightarrow \frac{ad-bc}{bd}<0$

$\Rightarrow ad-bc<0$ (do $bd>0$ với $b,d\in\mathbb{N}^*$)

Xét hiệu $\frac{2014a+c}{2014b+d}-\frac{c}{d}=\frac{d(2014a+c)-c(2014b+d)}{(2014b+d)d}$

$=\frac{2014(ad-bc)}{d(2014b+d)}<0$ do $ad-bc<0$ và $d(2014b+d)>0$ với mọi $b,d\in\mathbb{N}^*$

$\Rightarrow \frac{2014a+c}{2014b+d}< \frac{c}{d}$

23 tháng 3 2018

Áp dụng tính chất dãy tỉ số:

a/b <c/d => a/b < c+a/d+b 

Mà a/b < c/d => a+c/b+d < c+c/d+d= 2c/2d=c/d

Vậy a/b < a+c/b+d <c/d nếu a/b<c/d