Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,a, cm: tam giác BEC và tg BDC(c.g.c0
b, cm : tg ABE= tg ACD(c,g.c)
c, cm: BK=KC ( cm: tg BKD= tg CED)
CHO tam giác ABC có A =90 ,AB=8CM,AC=6CM
a, Tính BC
b, Trên cạnh AC lấy điểm E sao cho AE=2CM,, Trên tia đối của tia AB lấy điểm D sao cho AD=AB.chứng minh tam giác BEC=DEC
c, Chuwsngh minh DE ĐI QUA trung điểm cạnh BC
4,
a/ tgiác ACD và tgiác AME là hai tgiác vuông tại A.
AD = AE (gt)
góc(ADC) = góc (AEM) (góc có cạnh tương ứng vuông góc)
=> tgiácACD = tgiácAME (g.c.g)
b/ ta có: AG//EH (cùng vuông góc với CD)
=> AG // IH
mà gt => AI // GH
vậy AGHI là hình bình hành
=>AG = IH.
mặt khác theo cm trên ta có: tgiác ACD = tgiác AME
=> AM = AC = AB
=> A là trung điểm BM, mà AI // BC
=> AI là đường trung bình của tgiác MBH
=> I là trung điểm của MH.
vậy: IM = IH = AG
có: AM = AB
góc BAG = góc AMI (so le trong)
=> tgiác AGB = tgiác MIA ( c.g.c)
c/ có AG//MH, A là trung điểm BM
=> AG là đường trung bình của tgiácBMH
=> G là trung điểm BH
hay BG = GH.
Xét \(\Delta BAD\)(\(\widehat{A}=90^o\))và \(\Delta BHD\)(\(\widehat{H}=90^o\))có:
\(\widehat{ABD=\widehat{HBD}}\)(gt)
BD: cạnh chung
=> \(\Delta ABD=\Delta HBD\left(CH-GN\right)\)
=> AB=BH; AD=DC (2 cạnh t/ứng)
và \(\widehat{BDA=\widehat{BDC}}\)(2 góc t/ứng)
Xét \(\Delta ABH\)cân tại B(vì AB=BH[cmt]) có : BD là đường p.g
=> B là điểm thuộc đường trung trực AH (1)
Xét \(\Delta ADH\)cân tại D(vì AD=DH(cmt)) có: DB là đường p.g ( vì \(\widehat{BDA=\widehat{BDC}}\))
=> D là điểm thuộc đường trung trực AH (2)
Từ (1) và (2)=> BD là trung trực của đt AH
+ Xét \(\Delta ABD\)vuông tại A và \(\Delta HBD\)vuông tại H ( vì \(DH\perp BC\))
Có : BD là cạnh chung
\(\widehat{ABD}=\widehat{HBD}\)( Vì BD là p/g của góc B) => \(\Delta ABD=\Delta HBD\)( canh huyền-góc nhọn)
=> AB = HB
+ Gọi I là giao điểm của BD và AH
CM đc : \(\Delta ABI=\Delta HBI\)(c-g-c)
=> IA = IH ( 2 cạnh tương ứng) (1)
và \(\widehat{BIA}=\widehat{BIH}\)( 2 góc t.ư)
Vì \(\widehat{BIA}=\widehat{BIH};\widehat{BIA}+\widehat{BIH}=180^o\)( 2 góc k.bù)
=> \(\widehat{BIA}=\widehat{BIH}=\frac{180^o}{2}=90^o\Rightarrow BD\perp AH\)tại I (2)
Từ (1),(2) => BD là trung trực của đth AH
Lấy điểm F sao cho ^BCF = 90o => ^ACF = ^ABC = 19o => ^DCA = ^FCA = 19o
Có ^ECF + ^ECB = ^BCF = 90o
^CFE + ^EBC = 180o - ^BCF = 90o
Mà ^ECB = ^EBC = 19o (1)
=> ^ECF = ^EFC => \(\Delta\)FEC cân => FE = EC
(1) => => \(\Delta\)EBC cân => EB = EC
=> FE = EB
=> FE = \(\frac{1}{2}\)BF
=> AE + AF = \(\frac{1}{2}\)( BD + DF )
Mặt khác \(\Delta\)DCF có: ^DCA = ^ACF (= 19o) do đó CA phân giác ^DCF mà CA là đường cao \(\Delta\)DCF
=> \(\Delta\)DCF cân tại C => A là trung điểm DF => DF = 2AF
=> AE + AF = \(\frac{1}{2}\)BD + \(\frac{1}{2}\)DF
=> AE + AF = \(\frac{1}{2}\)BD + AF
=> AE = \(\frac{1}{2}\)BD
=> BD / AE = 2