Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có
OC chung
góc AOC=góc BOC
=>ΔOAC=ΔOBC
=>OA=OB và CA=CB
b: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có
CA=CB
góc ACD=góc BCE
=>ΔCAD=ΔCBE
=>CD=CE và AD=BE
c: Xét ΔOED có OA/AD=OB/BE
nên AB//ED
a: Xét ΔBAC và ΔB'A'C có
BC=B'C
\(\widehat{BCA}=\widehat{B'CA'}\)
CA=CA'
Do đó: ΔBAC=ΔB'A'C
Suy ra: \(\widehat{ABC}=\widehat{A'B'C}\)
xét tg ABC và tg EDC có
BC = EC ( gt )
góc BCA = góc DCE ( 2 góc đối đỉnh )
AC = DC
ABC = EDC
suy ra góc BAC = góc CDE = 90 độ
bạn chép tạm nha, những câu còn lại mình đang làm nha
a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có
OC chung
\(\widehat{AOC}=\widehat{BOC}\)
Do đó;ΔOAC=ΔOBC
Suy ra: OA=OB và CA=CB
hay ΔOAB cân tại O
b: Ta có: ΔOAB cân tại O
mà OC là đường phân giác
nên CO là đường cao
c: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có
CA=CB
\(\widehat{ACD}=\widehat{BCE}\)
Do đó: ΔCAD=ΔCBE
Suy ra: CD=CE
d: OA=12cm
OC=13cm
=>AC=5cm
a) vì C\(\varepsilon\)tia phân giác Oz=>CA=CB(tính chất đường phân giác của 1 góc)
b) Có E là trọng tâm CA
F là trọng tâm CB
=>EA=EC;FB=FC
Mà CA=CB(cmt)=>EC=FC
=>tam giác CEF cân tại C
c) vì E là trọng tâm AC=>AE=EC=1/2 AC=>AC<CE
Đề bài câu b sai bạn nhé! Có thể sửa thành CMR:AQ=BP
a) Ta có:
\(\left\{{}\begin{matrix}CA=CB\\AP=BQ\end{matrix}\right.\)\(\Rightarrow CA-AP=CB-BQ\Rightarrow CP=CQ\)
⇒△CPQ cân tại C (đpcm)
b)Xét △ACQ và △BCP có:
AC=BC (gt)
\(\widehat{A}\)chung
CQ=CP (cmt)
⇒△ACQ =△BCP (cgc)
⇒AQ=BP (2 cạnh tương ứng)
Câu b mình đánh sai \(\widehat{A}\rightarrow\widehat{C}\)bạn nhé!
a) M nằm trong Δ nên ABM
=> A, M, I không thẳng hàng
Theo BĐT Δ với ∆AMI:
AM < MI + IA (1)
Cộng vào hai vế của (1) với MB ta được:
AM + MB < MB + MI + IA
Mà MB + MI = IB
=> AM + MB < BI + IA
b) Ba điểm B, I, C không thẳng hàng nên BI < IC + BC (2)
cộng vào hai vế của (2) với IA ta được:
BI + IA < IA + IC + BC
Mà IA + IC = AC
Hay BI + IA < AC + BC
c) Vì AM + MB < BI + IA
BI + IA < AC + BC
Nên MA + MB < CA + CB
Vậy số đo cạnh thứ ba là 11cm