A B C AB=5CM

                                                       ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

mong các bạn giúp mình nhanh ạ

9 tháng 2 2019

A B C 5 5 8 H D E

Cm: Ta có: AB = AC <=> t/giác ABC là t/giác cân tại A 

                            <=> góc B = góc C

Xét t/giác ABH và t/giác ACH

có góc BHA = góc CHA = 900 (gt)

  AB = AC = 5 cm (gt)

góc B = góc C (cmt)

=> t/giác ABH = t/giác ACH (ch - gn)

=> BH = CH (hai cạnh tương ứng)

=> góc BAH = góc CAH (hai góc tương ứng)

b) Ta có: BH = CH = BC/2 = 8/2 = 4 (cm)

Xét t/giác ABH vuông tại H (áp dụng định lí Pi - ta- go)

=> AB2 = AH2 + BH2

=> AH2 = 52 - 4 = 9 = 32

=> AH = 3 (cm)

c) Xét t/giác ADH và t/giác AEH

có góc ADH = góc AEH = 900(gt)

   AH : chung

góc DAH = góc EAH (cmt)

=> t/giác ADH = t/giác AEH (ch - gn)

=> HD = HE (hai cạnh tương ứng)

=> t/giác HDE là t/giác cân tại H 

14 tháng 1 2020

Trả lời : Bn tham khảo link này : 

https://h.vn/hoi-dap/question/559410.html 

( Vào thống kê hỏi đáp của mk sẽ thấy ) 

14 tháng 1 2020

Đây mới là lin kđúng : Câu hỏi của Đoàn Nhật Nam - Toán lớp 7 | Học trực tuyến 

Xl cậu ( vào thống kê của mk sẽ thấy 

9 tháng 2 2017

a,xét tam giác ABH và tam giác ACH co

BH=HC(gt)

AH CHUNG

A1=A2=>TAM GIAC ABH=TM GIAC ACH

C,

7 tháng 1 2016

 

Ban xem o dinh li pita go phan hinh hoc ay BC= 10 CM TICK NHE

 

 

7 tháng 1 2016

tích đi giải cho

 

28 tháng 2 2018

a) Xét tam giác vuông ABC, áp dụng định lí Pi-ta-go ta có:

\(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)

b) Ta có do tam giác ABC vuông tại A nên \(\widehat{ABC}+\widehat{ACB}=90^o\)

Lại có \(\widehat{IBC}=\frac{\widehat{ABC}}{2};\widehat{ICB}=\frac{\widehat{ACB}}{2}\Rightarrow\widehat{IBC}+\widehat{ICB}=\frac{90^o}{2}=45^o\)

Xét tam giác BIC có \(\widehat{IBC}+\widehat{ICB}=45^o\) nên \(\widehat{BIC}=180^o-45^o=135^o\)

c) Kẻ DH vuông góc BC tại H.

Ta có ngay \(\Delta BAD=\Delta BHD\)   (Cạnh huyền - góc nhọn)

\(\Rightarrow AD=HD\)

Lại có : theo quan hệ giữa đường vuông góc với đường xiên thì HD < DC

Suy ra AD < DC

d) Gọi K là chân đường vuông góc hạ từ I xuống BC.

Ta có I là giao điểm của ba đường phân giác nên IE = IF = IK

Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=24\left(cm^2\right)\)

Lại có \(S_{ABC}=S_{ABI}+S_{BCI}+S_{CIA}=\frac{1}{2}AB.EI+\frac{1}{2}AC.IF+\frac{1}{2}BC.IK\)

\(=\frac{1}{2}\left(AB+BC+CA\right).EI=12.EI\)

Vậy nên \(12.EI=24\Rightarrow EI=2\left(cm\right)\)

Ta thấy AEIF là hình vuông nên AE = AF = 2cm.

16 tháng 4 2019

a, xét tam giác abc vuông tại a

theo đlí pytago có

\(bc=\sqrt{ab^2+ac^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

b,

xét tam giác abm và tam giác bkm có

góc bam=góc bkm(gt)

bm chung

góc abm=góc kbm(gt)

=>tam giác abm = tam giác bkm(gcg)

16 tháng 4 2019

b,(tiếp)

=> AM=MK(2 cạnh tg ứng)

24 tháng 4 2018

a)áp dụng định lý pitago ta có BC^2=AB^2+AB^2=8^2+6^2=100

=>BC=10

b ) Ta có AB = AD ( gt )
=> CA là đường trung tuyến của BD
CA vuông góc với BD ( t/g ABC vuông tại A )
=> Ca là đường cao của BD
mà CA là đường trung tuyến của BD ( chứng minh trên )
t/g BCD cân tại C
=> CA cũng là p/g của t/g ABC
=> góc BCA = góc DCA
BC = CD ( t/g BCD cân tại C ) 
EC : cạnh chung
suy ra t/g BEC = t/g DEC ( c - g - c )

c ) Trên trung tuyến CA có CE/AC = 6-2/6 = 2/3
ba đường trung tuyến của t/g BCD đồng quy tại E
=> DE là đường trung tuyến của BC 
=> DE đi qua trung điểm BC