\(\dfrac{1}{a^3}+\dfrac{a^3}{b^3}+b^3\ge\dfrac{1}{a}+\dfrac{a}{b}+b\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 3 2022

\(\dfrac{1}{a^3}+1+1\ge\dfrac{3}{a}\) ; \(\dfrac{a^3}{b^3}+1+1\ge\dfrac{3a}{b}\) ; \(b^3+1+1\ge3b\)

\(\Rightarrow\dfrac{1}{a^3}+\dfrac{a^3}{b^3}+b^3+6\ge3\left(\dfrac{1}{a}+\dfrac{a}{b}+b\right)=\left(\dfrac{1}{a}+\dfrac{a}{b}+b\right)+2\left(\dfrac{1}{a}+\dfrac{a}{b}+b\right)\)

\(\Rightarrow\dfrac{1}{a^3}+\dfrac{a^3}{b^3}+b^3+6\ge\dfrac{1}{a}+\dfrac{a}{b}+b+2.3\sqrt[3]{\dfrac{ab}{ab}}\)

\(\Rightarrow\dfrac{1}{a^3}+\dfrac{a^3}{b^3}+b^3\ge\dfrac{1}{a}+\dfrac{a}{b}+b\)

Dấu "=" xảy ra khi \(a=b=1\)

8 tháng 8 2017

1.Ta có :\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^2-xy+y^2\) (do x+y=1)

\(=\dfrac{3}{4}\left(x-y\right)^2+\dfrac{1}{4}\left(x+y\right)^2\ge\dfrac{1}{4}\left(x+y\right)^2\)\(=\dfrac{1}{4}.1=\dfrac{1}{4}\)

Dấu "=" xảy ra khi :\(x=y=\dfrac{1}{2}\)

Vậy \(x^3+y^3\ge\dfrac{1}{4}\)

8 tháng 8 2017

2.

a) Sửa đề: \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a^3-a^2b\right)+\left(b^3-ab^2\right)\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng vì \(a,b\ge0\))

Đẳng thức xảy ra \(\Leftrightarrow a=b\)

b) Lần trước mk giải rồi nhá

3.

a) Áp dụng BĐT Cauchy-Schwarz dạng Engel\(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{\left(1+1+1\right)^2}{\left(x+y+z\right)+3}=\dfrac{9}{3+3}=\dfrac{3}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}=\dfrac{1}{y+1}=\dfrac{1}{z+1}\\x+y+z=3\end{matrix}\right.\Leftrightarrow x=y=z=1\)

b) \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{x}{2\sqrt{x^2.1}}+\dfrac{y}{2\sqrt{y^2.1}}+\dfrac{z}{2\sqrt{z^2.1}}\)

\(=\dfrac{x}{2x}+\dfrac{y}{2y}+\dfrac{z}{2z}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)

17 tháng 2 2018

áp dụng bdt côsi \(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{3}{b}\)

tuông tu \(\dfrac{b^2}{c^3}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{3}{c}\)

\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{3}{a}\)

suy ra vt +\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

suy ra dpcm

dau = xay ra khi a=b=c

7 tháng 8 2017

Bài 3:

Áp dụng bất đẳng thức AM - GM có:
\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}\)

\(=2+2+2=6\)

Dấu " = " khi x = y = z = 1

Vậy...

7 tháng 8 2017

3. Với x,y,z>0 áp dụng BĐT Cauchy ta có

\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)

\(=\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)+\left(z+\dfrac{1}{z}\right)\)

\(\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}=2+2+2=6\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{x}\\y=\dfrac{1}{y}\\z=\dfrac{1}{z}\end{matrix}\right.\Leftrightarrow x=y=z=1\)

1. Với a=b=c=0, ta thấy BĐT trên đúng

Với a,b,c>0 áp dụng BĐT Cauchy cho 3 số dương

\(a^3+a^3+b^3\ge3\sqrt[3]{a^3.a^3.b^3}=3\sqrt[3]{a^6b^3}=3a^2b\) (1)

\(b^3+b^3+c^3\ge3\sqrt[3]{b^3.b^3.c^3}=3\sqrt[3]{b^6c^3}=3b^2c\) (2)

\(c^3+c^3+a^3\ge3\sqrt[3]{c^3.c^3.a^3}=3\sqrt[3]{c^6a^3}=3c^2a\) (3)

Cộng (1), (2), (3) vế theo vế:

\(a^3+b^3+c^3\ge a^2b+b^2c+c^2a>\dfrac{a^2b+b^2c+c^2a}{3}\) (vì a,b,c>0)

Do đó BĐT trên đúng \(\forall a,b,c\ge0\)

30 tháng 9 2018

Áp dụng BĐT: x2+y2+z2\(\ge\)xy+yz+zx ( với x,y,z >0)

Ta có\(\dfrac{a^8+b^8+c^8}{a^3b^3c^3}\)\(\ge\)\(\dfrac{a^4b^4+b^4c^4+c^4a^4}{a^3b^3c^3}\)

\(\ge\)\(\dfrac{a^4b^2c^2+b^4c^2a^2+c^4a^2b^2}{a^3b^3c^3}\)=\(\dfrac{a^2+b^2+c^2}{abc}\)\(\ge\)\(\dfrac{ab+bc+ca}{abc}\)

= \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) (đpcm)

Dấu "=" xảy ra \(\Leftrightarrow\) a=b=c

7 tháng 10 2018

b) \(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}\)

\(=\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)-\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)-2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{a+\sqrt{ab}-\sqrt{ab}+b-\sqrt{ab}+b-2b}{a-b}\)

\(=\dfrac{a}{a-b}\)

7 tháng 10 2018

khúc \(\dfrac{a}{a-b}\) sai nhé

\(=\dfrac{a-b}{a-b}=1\)

10 tháng 10 2018

Áp dụng BĐT \(AM-GM\) ta có :

\(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2+b^2\ge5\sqrt[5]{\dfrac{a^{15}b^4}{b^9}}=5\dfrac{a^3}{b}\)

\(\dfrac{b^5}{c^3}+\dfrac{b^5}{c^3}+\dfrac{b^5}{c^3}+c^2+c^2\ge5\sqrt[5]{\dfrac{b^{15}c^4}{c^9}}=5\dfrac{b^3}{c}\)

\(\dfrac{c^5}{a^3}+\dfrac{c^5}{a^3}+\dfrac{c^5}{a^3}+a^2+a^2\ge5\sqrt[5]{\dfrac{c^{15}a^4}{a^9}}=5\dfrac{c^3}{a}\)

Cộng từng vế của BĐT ta được :

\(3\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+2\left(a^2+b^2+c^2\right)\ge5\left(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\right)\)

Tiếp tục áp dụng BĐT \(AM-GM\) ta lại có :

\(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2+b^2+b^2\ge5\sqrt[5]{\dfrac{a^{10}b^6}{b^6}}=5a^2\)

\(\dfrac{b^5}{c^3}+\dfrac{b^5}{c^3}+c^2+c^2+c^2\ge5\sqrt[5]{\dfrac{b^{10}c^6}{c^6}}=5b^2\)

\(\dfrac{c^5}{a^3}+\dfrac{c^5}{a^3}+a^2+a^2+a^2\ge5\sqrt[5]{\dfrac{c^{10}a^6}{a^6}}=5c^2\)

Cộng vế theo vế ta được :

\(2\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+3\left(a^2+b^2+c^2\right)\ge5\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow2\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\ge2\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\ge a^2+b^2+c^2\)

\(\Rightarrow3\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+2\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\ge3\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+2\left(a^2+b^2+c^2\right)\ge5\left(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\right)\)

\(\Leftrightarrow5\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\ge5\left(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\right)\)

\(\Leftrightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\ge\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\left(đpcm\right)\)

10 tháng 10 2018

Bạn có cách nào ko đụng AM- GM 5 số không ( chứng minh chắc chết ) . Thầy mình gợi ý dùng bđt phụ a^3 + b^3 >= ab(a+b)

13 tháng 7 2021

Đặt x=\sqrt{\dfrac{a}{b}},y=\sqrt{\dfrac{b}{c}},z=\sqrt{\dfrac{c}{a}}x=ba,y=cb,z=ac thì  x,y,z>0x,y,z>0 và xyz=1xyz=1 . Bất đẳng thức cần chứng minh trở thành      x^3+y^3+z^3\ge x^2+y^2+z^2x3+y3+z3x2+y2+z2.

Áp dụng bất đẳng thức Cô si cho 3 số dương ta có

                x^3+x^3+1^3\ge3\sqrt[3]{x^3.x^3.1^3}x3+x3+1333x3.x3.13 hay  2x^3+1\ge3x^22x3+13x2.

Tương tự, 2y^3+1\ge3y^2;2z^3+1\ge3z^22y3+13y2;2z3+13z2. Cộng theo vế các bất đẳng thức nhận được ta có            2\left(x^3+y^3+z^3\right)+3\ge2\left(x^2+y^2+z^2\right)+\left(x^2+y^2+z^2\right)2(x3+y3+z3)+32(x2+y2+z2)+(x2+y2+z2)

                                                      =2\left(x^2+y^2+z^2\right)+3\sqrt[3]{x^2y^2z^2}=2(x2+y2+z2)+33x2y2z2

  \ge2\left(x^2+y^2+z^2\right)+3\sqrt[3]{1}2(x2+y2+z2)+331

Do đó         x^3+y^3+z^3\ge x^2+y^2+z^2x3+y3+z3x2+y2+z2. Đẳng thức xảy ra khi và chỉ khi  

       x=y=z=1\Leftrightarrow a=b=c>0x=y=z=1a=b=c>0.

29 tháng 8 2021

x=y=z=1