\(\frac{2^{36}.5^7+2^{13}.5^{27}}{2^{27}.5^7+2^{10}.5^{27}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

a,        \(\frac{2^{30}.5^7+2^{13}.5^{27}}{2^{27}.5^7+2^{10}.5^{27}}=\frac{2^{13}.\left(2^{17}.5^7+5^{27}\right)}{2^{10}.\left(2^{17}.5^7+5^{27}\right)}=\frac{2^{13}}{2^{10}}=2^3=8\).

b,        \(\frac{81.2^2+3^4+20.9^2}{16.3^2+45+2^2.9}=\frac{3^4.2^2+3^4+20.3^4}{16.3^2+3^2.5+2^2.3^2}=\frac{3^4.\left(2^2+1+20\right)}{3^2.\left(16+5+2^2\right)}=\frac{3^4.25}{3^2.25}=\frac{3^4}{3^2}=3^2=9\)

10 tháng 6 2017

a : 8

b : 9

17 tháng 8 2020

\(A=\frac{2^{30}.5^7+2^{13}.5^{27}}{2^{27}.5^7+2^{10}.5^{27}}\)

\(=\frac{2^3\left(2^{27}.5^7+2^{10}.5^{27}\right)}{2^{27}.5^7+2^{10}.5^{27}}\)

\(=2^3=8\)

17 tháng 8 2020

\(\frac{2^{30}.5^7+2^{13}.5^{27}}{2^{27}.5^7+2^{10}.5^{27}}+\frac{2^{13}.5^7\left(2^{17}+5^{20}\right)}{2^{10}.5^7\left(2^{17}+5^{20}\right)}=2^3=8\)

10 tháng 9 2016

a)

\(\Rightarrow A=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{5\left(\frac{1}{11}-\frac{1}{13}-\frac{1}{17}\right)}+\frac{2\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}{7\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}\)

\(\Rightarrow A=\frac{1}{5}+\frac{2}{7}\)

\(\Rightarrow A=\frac{17}{35}\)

b)

\(\Rightarrow B=5\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+....+\frac{1}{56}-\frac{1}{61}\right)\)

\(\Rightarrow B=5\left(\frac{1}{11}-\frac{1}{61}\right)\)

\(\Rightarrow B=5.\frac{50}{671}=\frac{250}{671}\)

c)

\(\Rightarrow C=1-\left(\frac{1}{1.3}+\frac{1}{2.3}+\frac{1}{2.5}+....+\frac{1}{49.25}\right)\)

\(\Rightarrow C=1-2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{49.50}\right)\)

\(\Rightarrow C=1-2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\right)\)

\(\Rightarrow C=1-1-\frac{1}{25}\)

\(\Rightarrow C=\frac{1}{25}\)

 

2 tháng 10 2018

\(\dfrac{2^{30}.5^7+2^{13}.5^{27}}{2^{27}.5^7+2^{10}.5^{27}}=\dfrac{2^{13}.5^7.\left(2^{17}+5^{20}\right)}{2^{10}.5^7.\left(2^{17}+5^{20}\right)}= \dfrac{2^{13}.5^7}{2^{10}.5^7}=2^3=8\)

4 tháng 7 2018

a) \(A=\frac{5^4.20^4}{25^5.4^5}=\frac{5^4.\left(2^2.5\right)^4}{5^{2^5}.\left(2^2\right)^5}=\frac{5^8.2^8}{5^{10}.2^{10}}=\frac{1}{\left(5^{10}:5^8\right).\left(2^{10}:2^8\right)}=\frac{1}{5^2.2^2}=\frac{1}{25.4}=\frac{1}{100}\)

b) \(B=\frac{2^{30}.5^7+2^{13}.5^{27}}{2^{27}.5^7+2^{10}.5^{27}}\)\(=\frac{2^3+2^3}{1}=\frac{8+8}{1}=16\)

c) \(C=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...........+\frac{1}{2^{100}}\)

\(\Rightarrow2C=1+\frac{1}{2}+\frac{1}{2^2}+..........+\frac{1}{2^{99}}\)

\(\Rightarrow2C-C=\left(1+\frac{1}{2}+\frac{1}{2^2}+.........+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...........+\frac{1}{2^{100}}\right)\)

\(\Rightarrow C=1-\frac{1}{2^{100}}\)

d) \(D=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+.........+\frac{1}{5^{100}}\)

\(\Rightarrow5D=5+1+\frac{1}{5^2}+\frac{1}{5^3}+...........+\frac{1}{5^{101}}\)

\(\Rightarrow5D-D=\left(5+1+\frac{1}{5^2}+\frac{1}{5^3}+.........+\frac{1}{5^{101}}\right)-\left(1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+..........+\frac{1}{5^{100}}\right)\)

\(\Rightarrow4D=5-\frac{1}{5^{101}}\)

\(\Rightarrow D=\frac{5-\frac{1}{5^{101}}}{4}\)

4 tháng 7 2018

a) \(A=\frac{5^4x20^4}{25^5x4^5}=\frac{5^4x\left(2^2x5\right)^4}{\left(5^2\right)^5x\left(2^2\right)^5}=\frac{5^8.2^8}{5^{10}.2^{10}}=\frac{1}{5^2x2^2}=\frac{1}{25.4}=\frac{1}{100}\)

b) \(B=\frac{2^{30}x5^7+2^{13}x5^{27}}{2^{27}x5^7+2^{10}x5^{27}}=\frac{2^{13}.5^7.\left(2^{17}+5^{20}\right)}{2^{10}.5^7.\left(2^{17}+5^{20}\right)}=2^3=8\)

c) \(C=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Rightarrow2C=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Rightarrow2C-C=1-\frac{1}{2^{100}}\)

\(C=1-\frac{1}{2^{100}}\)

phần d bn lm tương tự như phần c nha!
 

a: \(=\dfrac{2^{13}\cdot5^7\left(2^{17}+5^{20}\right)}{2^{10}\cdot5^7\left(2^{17}+5^{20}\right)}=2^3\)

b: \(M=\left(7-4\right)^{\left(7-5\right)^{\left(7-6\right)^{\left(7+6\right)^{\left(7+5\right)}}}}\)

\(=3^{2\cdot1\cdot13\cdot12}=3^{312}\)

4 tháng 10 2021

yutyugubhujyikiu

23 tháng 10 2016

a) \(A=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{\frac{5}{11}-\frac{5}{13}-\frac{5}{17}}+\frac{\frac{2}{3}-\frac{2}{9}-\frac{2}{27}+\frac{2}{81}}{\frac{7}{3}-\frac{7}{9}-\frac{7}{27}+\frac{7}{81}}\)

\(=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{5\left(\frac{1}{11}-\frac{1}{13}-\frac{1}{17}\right)}+\frac{2\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}{7\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}\)

\(=\frac{1}{5}+\frac{2}{7}\)

\(=\frac{7}{35}+\frac{10}{35}\)

\(=\frac{17}{35}\)

Vậy \(A=\frac{17}{35}\)

b) \(B=\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}+...+\frac{5^2}{56.61}\)

\(=5.\left(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{56.61}\right)\)

\(=5.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{56}-\frac{1}{61}\right)\)

\(=5.\left(\frac{1}{11}-\frac{1}{61}\right)\)

\(=5.\left(\frac{61}{671}-\frac{11}{671}\right)\)

\(=5.\frac{50}{671}\)

\(=\frac{250}{671}\)

Vậy \(B=\frac{250}{671}\)