Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì trong mỗi ngoặc có một số hạng nên vì có 100 số hạng nên có 100x
ta có 100x+(1+2+3+.....+100)=5750
100x+5050=5750
100x=5750-5050
100x=700
x=700:100
x=7
nếu tính ko nhầm
a)(x+1)+(x+2)+...+(x+100)=5750
(x+x+...+x)+(1+2+...+100)=5750
1+2+...+100 có: (100-1)+1 =100 số hạng
1+2+...+100=(100+1)*100/2=5050
=>100x+5050=5750
100x=5750-5050
100x=700
x=700/100
x=7. Vậy x=7
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)
\(\left(x\cdot100\right)+\left(1+2+...+100\right)=5750\)
\(\left(x\cdot100\right)+\left(100+1\right)\cdot\frac{100}{2}=5750\)
\(\left(x\cdot100\right)+101\cdot50=5750\)
\(\left(x\cdot100\right)+5050=5750\)
\(x\cdot100=5750-5050\)
\(x\cdot100=700\)
\(x=700\div100\)
\(x=7\)
Ta có: ( x+1)+(x+2)+(x+3)+.....+(x+99)+(x+100)=5750
<=>(x+x+x+....+x+x)+(1+2+3+..+99+100)=5750
<=> 100x+5050=5750
=>100x=5750-5050
=>100x=700
=>x=700:100
=>x=7
Vậy x=7
hoặc mở câu hỏi tương tự tham khảo.
a/ \(3+2^{x-1}=24-\left[4^2-\left(2^2-1\right)\right]\\3+2^{x+1}=24-\left[16-\left(4-1\right)\right]\)
\(3+2^{x+1}=24-\left(16-3\right)\\ 3+2^{x-1}=24-13\\ 3+2^{x-1}=11\\ 2^{x+1}=11-3\\ 2^{x-1}=8\)
\(2^{x-1}=2^3\\ \Rightarrow x-1=3\\x=3+1\\ x=4\)
\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=205550\)
\(\left(x.100\right)+\left(1+2+3+....+100\right)=205550\)
Ta tính tổng \(1+2+3+...+100\\ \) trước
Số các số hạng: \(\left[\left(100-1\right):1+1\right]=100\)
Tổng :\(\left[\left(100+1\right).100:2\right]=5050\)
Thay số vào ta có được:
\(\left(x.100\right)+5050=205550\\ \\ x.100=205550-5050\\ \\x.100=20500\\ \\x=20500:100\\ \\\Rightarrow x=2005\)
\(\left|x+5\right|=5\)
<=> \(\hept{\begin{cases}x+5=5\\x+5=-5\end{cases}}\)
<=> \(\hept{\begin{cases}x=0\\x=-10\end{cases}}\)
\(\left|x+1\right|+7=10\)
<=> \(\left|x+1\right|=3\)
<=> \(\hept{\begin{cases}x+1=3\\x+1=-3\end{cases}}\)
<=> \(\hept{\begin{cases}x=2\\x=-4\end{cases}}\)
\(\left|x-3\right|-6=5\)
<=> \(\left|x-3\right|=11\)
<=> \(\hept{\begin{cases}x-3=11\\x-3=-11\end{cases}}\)
<=> \(\hept{\begin{cases}x=14\\x=-8\end{cases}}\)
\(\left|x+2\right|-6\left(x-4\right)=20-6x\)
<=> \(\left|x+2\right|-6x+24=20-6x\)
<=> \(\left|x+2\right|=-4\)
<=> \(\hept{\begin{cases}x+2=-4\\x+2=4\end{cases}}\)
<=> \(\hept{\begin{cases}x=-2\\x=2\end{cases}}\)
a) \(|x+5|=5\)
\(\Rightarrow\orbr{\begin{cases}x+5=5\\x+5=-5\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-10\end{cases}}\)
Vậy x = 0 hoặc x = -10
b) \(|x+1|+7=10\)
\(\Rightarrow|x+1|=10-7\)
\(\Rightarrow|x+1|=3\)
\(\Rightarrow\orbr{\begin{cases}x+1=3\\x+1=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}\)
Vậy x = 2 hoặc x = -4
c) \(|x-3|-6=5\)
\(\Rightarrow|x-3|=5+6\)
\(\Rightarrow|x-3|=11\)
\(\Rightarrow\orbr{\begin{cases}x-3=11\\x-3=-11\end{cases}}\Rightarrow\orbr{\begin{cases}x=14\\x=-8\end{cases}}\)
Vậy x = 14 hoặc x = -8
d) \(|x+2|-6\left(x-4\right)=20-6x\)
\(\Rightarrow|x+2|-6x+24=20-6x\)
\(\Rightarrow|x+2|=20-6x-24+6x\)
\(\Rightarrow|x+2|=\left(20-24\right)+\left(-6x+6x\right)\)
\(\Rightarrow|x+2|=-4\)
Vì \(|x|\ge0\)mà \(|x+2|=-4\)
\(\Rightarrow\)Không có giá trị x thỏa mãn
_Chúc bạn học tốt_
a, [x+1]2 + [y+5]2 = 16
Theo đề, ta có: 0 \(\le\)[x+1]2 \(\le\)16; 0\(\le\)[y+5]2 \(\le\)16
Dễ dàng nhận thấy [x+1]2 và [y+5]2 là hai số chính phương, mà từ 0 - 16 chỉ có hai số chính phương 0 và 16 là có tổng là 16
=> Có hai trường hợp:
* \(\hept{\begin{cases}\left[x+1\right]^2=0\\\left[y+5\right]^2=16\end{cases}\Rightarrow}\hept{\begin{cases}x+1=0\\\hept{\begin{cases}y+5=4\\y+5=-4\end{cases}}\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases};}\hept{\begin{cases}x=-1\\y=-9\sqrt[]{}\sqrt[]{}\end{cases}}}\)
\(a.\left(x-4\right)\left(x+7\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-4=0\\x+7=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\x=-7\end{cases}}}\)
\(b.x\left(x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=-3\end{cases}}}\)
\(c.\left(x-2\right)\left(5-x\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\5-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)
\(d.\left(x-1\right)\left(x^2+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x^2=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\x=-\left(-1\right)or\left(-1\right)\end{cases}}}\)
a) ( x - 4 ) . ( x + 7 ) = 0
một phép nhân có tích bằng 0
=> một trong hai thừa số này bằng 0
+) nếu x - 4 = 0 => x = 0 + 4 = 4
+) nếu x + 7 = 0 => x = 0 - 7 = -7
vậy x = { 4 ; -7 }
b) x . ( x + 3 ) = 0
x + 3 = 0 : x
x + 3 = 0
x = 0 - 3
x = -3
vậy x = -3
c) ( x - 2 ) . ( 5 - x ) = 0
một phép nhân có tích bằng 0
=> một trong hai thừa số này bằng 0
+) nếu x - 2 = 0 => x = 0 + 2 = 2
+) nếu 5 - x = 0 => x = 5 - 0 = 5
vậy x = { 2 ; 5 }
d) ( x - 1 ) . ( x2 + 1 ) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
+) x - 1 = 0 => x = 0 + 1 = 1
+) x2 + 1 = 0 => x2 = 0 - 1 = -1 => x = -1
vậy x = { 1 ; -1 }
\(a)\) \(A=4+2^2+2^3+...+2^{20}\)
\(A=2^2+2^2+2^3+...+2^{20}\)
\(2A=2^3+2^3+2^4+...+2^{21}\)
\(2A-A=\left(2^3+2^3+2^4+...+2^{21}\right)-\left(2^2+2^2+2^3+...+2^{20}\right)\)
\(A=2^3+2^{21}-2^2-2^2\)
\(A=2^3+2^{21}-2.2^2\)
\(A=2^3+2^{21}-2^3\)
\(A=2^{21}\)
Vậy \(A=2^{21}\)
\(b)\) \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(\Leftrightarrow\)\(\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=5750\)
\(\Leftrightarrow\)\(100x+\frac{100\left(100+1\right)}{2}=5750\)
\(\Leftrightarrow\)\(100x+5050=5750\)
\(\Leftrightarrow\)\(100x=5750-5050\)
\(\Leftrightarrow\)\(100x=700\)
\(\Leftrightarrow\)\(x=\frac{700}{100}\)
\(\Leftrightarrow\)\(x=7\)
Vậy \(x=7\)
Chúc bạn học tốt ~
b, (x+x+x+....+x)+(1+2+3+4+...+100)=5750
100x+5050=5750
100x=5750-5050
100x=700
x=700/100
x=7