Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a + b = c => (a + b)² = c² <=> a²+ b² + 2ab = c²
=> c^4 = (a² + b² + 2ab)²
=> c^4 = a^4 + b^4 + 6a²b² + 4a^3.b + 4a.b^3
vậy: a^4 + b^4 + c^4 = 2a^4 + 2b^4 + 6a²b² + 4a^3.b + 4a.b^3
= 2a^4 + 2a²b² + 4a^3.b + 2b^4 + 2a²b² + 4a.b^3 + 2a²b²
= 2a²(a² + b² + 2ab) + 2b²(b² + a² + 2ab) + 2a²b²
= 2a²(a + b)² + 2b²(a + b)² + 2a²b²
= 2a²b² + 2(a + b)²(a² + b²)
= 2a²b² + 2c²(a² +b²)
= 2a²b² + 2b²c² + 2c²a² (đpcm)
gt: a + b = c => (a + b)² = c² <=> a²+ b² + 2ab = c²
=> c^4 = (a² + b² + 2ab)²
=> c^4 = a^4 + b^4 + 6a²b² + 4a^3.b + 4a.b^3
vậy: a^4 + b^4 + c^4 = 2a^4 + 2b^4 + 6a²b² + 4a^3.b + 4a.b^3
= 2a^4 + 2a²b² + 4a^3.b + 2b^4 + 2a²b² + 4a.b^3 + 2a²b²
= 2a²(a² + b² + 2ab) + 2b²(b² + a² + 2ab) + 2a²b²
= 2a²(a + b)² + 2b²(a + b)² + 2a²b²
= 2a²b² + 2(a + b)²(a² + b²)
= 2a²b² + 2c²(a² +b²)
= 2a²b² + 2b²c² + 2c²a² (đpcm)
1.
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)
Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)
Từ đó ta được đpcm
bạn ơi a2 là a^2 bạn nhé,mấy cái khác cũng tương tự,vì mình lười bấm nhé)
A=2a2b2+2b2c2+2a2c2−a4−b4−c4
⟺A=4a2c2−(a4+b4+c4−2a2b2+2a2c2−2b2c2)
⟺A=4a2c2−(a2−b2+c2)2
⟺A=(2ac+a2−b2+c2)(2ac−a2+b2−c2)
⟺A=((a+c)2−b2)(b2−(a−c)2)
⟺A=(a+b+c)(a+c−b)(b+a−c)(b−a+c)
Mà a, b, ca, b, c là 33 cạnh của tam giác nên:a+b+c>0;a+c−b>0;b+a−c>0;b−a+c>0⟹(a+b+c)(a+c−b)(b+a−c)(b−a+c)>0
⟹A>0 (Dpcm)
a, \(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)
\(=a^2b^2\left(a-b\right)-b^2c^2\left(c-b\right)+c^2a^2\left[\left(c-b\right)-\left(a-b\right)\right]\)
\(=a^2b^2\left(a-b\right)-b^2c^2\left(c-b\right)+c^2a^2\left(c-b\right)-c^2a^2\left(a-b\right)\)
\(=\left(a-b\right)\left(a^2b^2-c^2a^2\right)-\left(c-b\right)\left(b^2c^2-c^2a^2\right)\)
\(=\left(a-b\right)a^2\left(b-c\right)\left(b+c\right)-\left(b-c\right)c^2\left(a-b\right)\left(a+b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a^2b+a^2c-c^2a-c^2b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left[ac\left(a-c\right)+b\left(a-c\right)\left(a+c\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(ac+ab+bc\right)\)
b, \(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
\(=a^4\left(b-a+a-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
\(=a^4\left(b-a\right)+a^4\left(a-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
\(=\left(a-b\right)\left(c^4-a^4\right)+\left(a-c\right)\left(a^4-b^4\right)\)
\(=\left(a-b\right)\left(c^2-a^2\right)\left(c^2+a^2\right)+\left(a-c\right)\left(a^2-b^2\right)\left(a^2+b^2\right)\)
\(=\left(a-b\right)\left(a-c\right)\left[\left(a+b\right)\left(a^2+b^2\right)-\left(c+a\right)\left(c^2+a^2\right)\right]\)
\(=\left(a-b\right)\left(a-c\right)\left[a^3+ab^2+a^2b+b^3-c^3-a^2c-ac^2-a^3\right]\)
\(=\left(a-b\right)\left(a-c\right)\left[a^2\left(b-c\right)+a\left(b^2-c^2\right)+\left(b^3-c^3\right)\right]\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left[a^2+a\left(b+c\right)+b^2+bc+c^2\right]\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left[a^2+b^2+c^2+ab+bc+ca\right]\)