Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có:
T=2013^0+2013^1+2013^2+...+2013^2009+2013^2010
=> 2013T = 2013+2013^2+2013^3+....+2013^2010+2013^2011
=> 2013T-T = (2013+2013^2+2013^3+....+2013^2010+2013^2011) - (2013^0+2013^1+2013^2+...+2013^2009+2013^2010)
<=> 2012T = 2013^2011-2013^0
<=> 2012T=2013^2011-1
=> 2012T +1 = 2013^2011
\(A=2^0+2^1+2^2+.....+2^{1990}\)
\(2A=2\left(2^0+2^1+2^2+.....+2^{1990}\right)\)
\(2A=2^1+2^2+2^3+.....+2^{1991}\)
\(2A-A=\left(2^1+2^2+2^3+.....+2^{1991}\right)-\left(2^0+2^1+2^2+.....+2^{1990}\right)\)
\(A=2^{1991}-2^0=2^{1991}-1\)
\(B=a^0+a^1+a^2+a^3+.....+a^n\)
\(B.a=a^1+a^2+a^3+a^4+.....+a^{n+1}\)
\(B.a-B=\left(a^1+a^2+a^3+a^4+......+a^{n+1}\right)-\left(a^0+a^1+a^2+a^3+.....+a^n\right)\)
\(B.a=a^{n+1}-1\Leftrightarrow B=\dfrac{a^{n+1}-1}{a}\)
\(C=1+3+3^2+.....+3^{50}\)
\(3C=3\left(1+3+3^2+.....+3^{50}\right)\)
\(3C=3+3^2+3^3+.....+3^{51}\)
\(3C-C=\left(3+3^2+3^3+.....+3^{51}\right)-\left(1+3+3^2+.....+3^{50}\right)\)
\(2C=3^{51}-1\Rightarrow C=\dfrac{3^{51}-1}{2}\)