![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) P=2+22+23+24+...+260 \(⋮\) 21 và 15
\(\Rightarrow\)P = 22+23+24+25+...+261
\(\Rightarrow\) (2P - P) = 261 - 2
\(\Rightarrow\) P = 261 - 2 = 2.(260 - 1)
Để P \(⋮\) 21 và 15 thì (260 - 1) \(⋮\)21 và 15
tức là (260 - 1) \(⋮\)3; 5; 7
*Ta có 260 - 1 = (24)15 = 1615 - 1
= (16 - 1).(1+16+162+163+...+1614)
= 15.(1+16+162+163+...+1614) \(⋮\) 15
Vậy P \(⋮\) 15 (1)
* Ta có 260 - 1 = (26)10 - 1 = 6410 - 1
= (64 - 1).(1+64+642+643+...+649 )
= 63 \(⋮\) (1+64+642+643+...+649 )
= 21.3.(1+64+642+643+...+649 ) \(⋮\) 21
P \(⋮\)21 (2)
Từ (1) và (2) \(\Rightarrow\) P \(⋮\)15 và 21
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a)CMR: ab + ba chia hết cho 11
Theo đề bài ta có: ab + ba = (10a + b) + (10b + a)
= 11a + 11b chia hết cho 11 b)CMR: abc - cba chia hết cho 99
Theo đề bài ta có: abc - cba = (100a - 10b - c) + (100c - 10b - a)
= 99a - 99c chia hết cho 99
Bài 2
A= (321 + 322 + 323) + ... + (327 + 328 + 329) A= 321.(1 + 3 + 32) + ... + 327. (1 + 3 + 32)
A=321 . 13 + ... + 327 . 13
A= 13 . (321 + ... + 327) chia hết cho 13
![](https://rs.olm.vn/images/avt/0.png?1311)
A có 24 lũy thừa.
Trước hết ta thấy rõ A chia hết cho 4 vì từng số hang của dãy số A chia hết cho 4
A có 24 lũy thừa nên ta chia thành 12 cặp lũy thừa
A = (4+4^2) + (4^3+4^4) + ...+ (4^23+4^24)
A = 4.(1+4) + 4^3.(1+4) + ...+ 4^23.(1+4)
A = 4.5 + 4^3.5 + .....+ 4^23.5
vậy A chia hết cho 5 và 4 nên A chia hết cho 20
b) làm tương tự nhưng nhóm thành mỗi nhóm 3 lũy thừa ta được 8 nhóm lũy thừa
A = 4.(1+4+4^2) + ......+ 4^22.(1+4+4^2)
A = 4.21 + ......+4^22.21 => A chia hết 21
c) A chia hết cho 20 và 21 mà 20 và 21 là nguyên tố cùng nhau nên
A chia hết cho 20.21 = 420 (đpcm)
A=(4+42)+(43+44)+.......+(423+424)
A=1.(4+42)+42.(4+42)+........+422.(4+42)
A=1.20+42.20+......+422.20
A=20.(1+42+........+422)
=> A chia hết cho 20 ( ĐPCM)
A=(4+42+43)+(44+45+46)+..........+(422+423+424)
A=1.(4+42+43)+43.(1+42+43)+...........+421.(4+42+43)
A=1.84+43.84+...........+421.84
A=84.(1+43+........+421)
Vì 84 chia hết cho 21 => A chia hết cho 21
Mà A chia hết cho 21 và 20 => A chia hết cho 420
![](https://rs.olm.vn/images/avt/0.png?1311)
A = 21+22+23+24+...+2100
A = (21+22)+(23+24)+...+(299+2100)
A = 2(1+2) + 23(1+2) +....+ 299.(1+2)
A = 2.3 + 23.3 +....+ 299.3
A = 3.(2+23+...+299) chia hết cho 3
=> A chia hết cho 3 (đpcm)
A = 21+22+23+24+...+2100
A = (21+22+23+24)+(25+26+27+28)+...+(297+298+299+2100)
A = 2(1+2+22+23)+25(1+2+22+23)+...+297(1+2+22+23)
A = 2.15 + 25.15 +....+ 297.15
A = 15.(2+25+...+297) chia hết cho 5 (vì 15 chia hết cho 5)
=> A chia hết cho 5 (Đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
A = 2 + 22 + 23 + 24 + 25 + ... + 260
A = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 256 + 257 + 258 + 259 + 260 )
A = 2 . (1 + 2 + 22 + 23 + 24 + 25 ) + ... + 256 . ( 1 + 2 + 22 + 23 + 24 + 25 )
A = 2 . 63 + ... + 256 . 63
A = 63 . ( 2 + ... + 256 )
A = 21 . 3 . ( 2 + ... + 256 ) \(⋮\)21
Muốn chứng minh A chia hết cho 21 ta phải chứng minh A chia hết cho 3;7
Ta có :A= (2+22)+(23+24)+(25+26)+.....+(259+260)
A=2.(1+3)+23.(1+2)+25.(1+2)+....+259.(1+2)
A=2.3+23.3+25.3+...+259.3
A=3.(2+23+25+...+259) chia hết cho 3 (1)
Ta có : A= (2+22+23)+(24+25+26)+......+(258+259+260)
A=2.(1+2+22)+24.(1+2+22)+....+258.(1+2+22)
A=2.7+24.7+......+258.7
A=7.(2+24+...+258) chia hết cho 7 (2)
từ (1) ; (2) suy ra tổng A chia hết cho 21
Nếu đứng Nhớ k mình nha !
![](https://rs.olm.vn/images/avt/0.png?1311)
Giúp bạn bài 1 nhé!
=(2+2^2)+(2^3+2^4)+...+(2^9+2^10)
=2.(1+2)+2^3.(1+2)+...2^9+(1+2)
= 2.3+2^3.3+...+2^9.3 = 3.(2+2^3+2^5+...+2^9) Do 3 chia hết cho 3 Suy ra tổng đó chia hết cho 3
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Cái này số nhỏ nên tớ tính luôn nhé :)
A=2+2^2+2^3+......+2^8
=> 2A=2^2+2^3+.......+2^9
=> 2A-A=A=2^9-2=512-2=510 chia hết cho 3(đpcm)
Đặt \(A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\)
\(\Rightarrow2A=2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9\)
\(\Rightarrow2A-A=\left(2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9\right)-\left(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\right)\)
\(\Rightarrow A=2^9-2\)
\(\Rightarrow A=512-2=510⋮3\)
Vậy A chia hết cho 3 (đpcm)