Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 110-(-761) + 296 -1454 - (-813+1077)
A = 871 + 296 - 1454 - 264
A= -551
\(B=\frac{15.4^{12}.9^7-4.3^{15}.8^8}{19.2^{24}.3^{14}-6.4^{12}.27^5}=\frac{3}{1}=3\)
\(=\frac{3.5.\left(2^2\right)^{12}.\left(3^2\right)^7-2^2.3^{15}.\left(2^3\right)^8}{19.2^{24}.3^{14}-2.3.\left(2^2\right)^{12}.\left(3^3\right)^5}\)
\(=\frac{3.5.2^{24}.3^{14}-2^2.3^{15}.2^{24}}{19.2^{24}.3^{14}-2.3.2^{24}.3^{15}}\)
\(=\frac{5.2^{24}.3^{15}-3^{15}.2^{26}}{19.2^{24}.3^{14}-2^{25}.3^{16}}\)
\(=\frac{2^{24}.3^{15}.\left(5-2^2\right)}{2^{24}.3^{14}.\left(19-3^2\right)}\)
\(=\frac{3.1}{10}\)
\(=\frac{3}{10}\)
a) \(227+50+23=\left(227+23\right)+50=250+50=300\)
b) \(135+360+65+40=\left(135+65\right)+\left(360+40\right)=200+400=600\)
c) \(1+2+3+4+5+...+97+98+99+100\)
\(=\left(100+1\right)+\left(99+2\right)+...+\left(50+51\right)\)
\(=101+101+101+...+101\)
\(=101\cdot50\)
\(\Leftrightarrow5050\)
d) \(115\cdot13-13\cdot15=13\cdot\left(115-15\right)=13\cdot100=1300\)
e) \(50-49+48-47+...+4-3+2-1\)
\(=\left(50-49\right)+\left(48-47\right)+...+\left(2-1\right)\)
\(=1+1+1+1+..+1\)
\(=1\cdot25\)
\(=25\)
f) \(30\cdot40\cdot50\cdot60=10\cdot3+10\cdot4+10\cdot5+10\cdot6\)
\(=10\cdot10\cdot10\cdot10\cdot3\cdot4\cdot5\cdot6\)
\(=10000\cdot360\)
\(=3600000\)
g) \(27\cdot36+27\cdot64=27\cdot\left(36+64\right)=27\cdot100=2700\)
h) \(5\cdot2^2-18:3=5\cdot4-18:3=20-6=14\)
i) \(13\cdot17-256:16+14:7-2021^0\)
\(=13\cdot17-4^4:4^2+2-1\)
\(=13\cdot17-16+2-1\)
\(=13\cdot17-17\)
\(=17\cdot\left(13-1\right)\)
\(=204\)
j) \(7^2-36:3=49-12=37\)
250-249-248-..........-22-2
=2.(150-149-................-12-1)
=2.(-50)
=-100
\(B=2^{50}-2^{49}-2^{48}-2^{47}-...-2^2-2\)
Đặt \(A=2^{49}+2^{48}+...+2\)
\(\Rightarrow2A=2^{50}+2^{49}+...+2^2\)
\(\Rightarrow A=2A-A=2^{50}+2^{49}+...+2^2-2^{49}-2^{48}-...-2=2^{50}-2\)
\(\Rightarrow B=2^{50}-A=2^{50}-2^{50}+2=2\)
Đặt \(A=2^{49}+2^{48}+...+2^2+2\)
\(\Leftrightarrow2A=2^{50}+2^{49}+...+2^3+2^2\)
\(\Leftrightarrow A=2^{50}-2\)
\(B=2^{50}-A=2^{50}-2^{50}+2=2\)
=> \(A=\frac{\left(\frac{49}{1}+\frac{48}{2}+...+\frac{1}{49}\right)}{50}=\frac{49}{50.1}+\frac{48}{50.2}+...+\frac{1}{50.49}\)
=> \(A=\frac{50-1}{50.1}+\frac{50-2}{50.2}+...+\frac{50-49}{50.49}\)
=> \(A=\left(\frac{50}{50.1}+\frac{50}{50.2}+...+\frac{50}{50.49}\right)-\left(\frac{1}{50.1}+\frac{2}{50.2}+...+\frac{49}{50.49}\right)\)
=> \(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\) ( có 49 số 1/50 )
=> \(A=1+\frac{1}{2}+...+\frac{1}{49}-\frac{49}{50}=\left(1-\frac{49}{50}\right)+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\)
=> \(A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\)
Vậy A không phải là số tự nhiên
a) A = 110 - (-761) + 296 + 1454 - (-813 + 1077)
= 110 + 761 + 296 + 1454 - 264
= 871 + 1750 - 264
= 2631 - 264
= 2357