K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2018

\(a,A=\dfrac{101}{100}+\dfrac{102}{100}+\dfrac{103}{100}+...+\dfrac{199}{100}\)

\(A=\dfrac{101+102+103+...+109}{100}\)

Xét tử số : \(101+102+103+...+199\)

Có : \(\left(199-101\right):1+1=99\) (số hạng)

\(\Rightarrow\) Tử số bằng \(:\left(199+101\right).99:2=14850\)

\(\Rightarrow A=\dfrac{14850}{100}=\dfrac{297}{2}\)

\(b,B=\dfrac{10002}{10000}+\dfrac{10004}{10000}+\dfrac{10006}{10000}+...+\dfrac{12014}{10000}\)

\(B=\dfrac{10002+10004+10006+...+12014}{10000}\)

\(B=\dfrac{10002+10004+10006+...+12014}{10000}\)

Xét tử số : \(10002+10004+10006+...+12014\)

Có : \(\left(12014-10002\right):2+1=1007\) (số hạng)

\(\Rightarrow\) Tử số bằng : \(\left(12014+10002\right).1007:2=11085056\)

\(\Rightarrow B=\dfrac{11085056}{10000}\)

Bạn tự làm câu C nha

\(D=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{2014.2015}\)

\(\Rightarrow D=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\)

\(\Rightarrow D=\dfrac{1}{5}-\dfrac{1}{2015}=\dfrac{402}{2015}\)

\(E=\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{2014.2017}\)

\(\Rightarrow3E=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{2014.2017}\)

\(\Rightarrow3E=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{2014}-\dfrac{1}{2017}\)

\(\Rightarrow3E=1-\dfrac{1}{2017}=\dfrac{2016}{2017}\)

\(\Rightarrow E=\dfrac{2016}{2017}:3=\dfrac{672}{2017}\)

22 tháng 10 2018

D = \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\) + \(\dfrac{1}{7.8}\) +...+ \(\dfrac{1}{2014.2015}\)
D = \(\dfrac{1}{5}\) - \(\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
+...+ \(\dfrac{1}{2014}-\dfrac{1}{2015}\)
D = \(\left(\dfrac{1}{5}-\dfrac{1}{2015}\right)\)
D = \(\dfrac{403}{2015}-\dfrac{1}{2015}\)
D = \(\dfrac{402}{2015}\)

5 tháng 11 2017

\(\dfrac{1}{3}\)x(\(\dfrac{3}{1+4}\)+\(\dfrac{3}{4+7}\)+........+\(\dfrac{3}{101+103}\))

\(\dfrac{1}{3}\)x(\(\dfrac{1}{1}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{7}\)+.........+\(\dfrac{ }{ }\)\(\dfrac{1}{101}\)-\(\dfrac{1}{103}\))

\(\dfrac{1}{3}\)x(\(\dfrac{1}{1}\)-\(\dfrac{1}{103}\))

\(\dfrac{1}{3}\)x\(\dfrac{102}{103}\)

\(\dfrac{34}{103}\)

27 tháng 10 2017

\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{100.103}\)

\(=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\)

\(=\dfrac{1}{1}-\dfrac{1}{103}\)

\(=\dfrac{102}{103}\)

19 tháng 12 2017

\(l=\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+....+\dfrac{1}{97.100}\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{100}\right)=\dfrac{1}{3}-\dfrac{1}{300}< \dfrac{1}{3}\left(đpcm\right)\)

19 tháng 9 2017

\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{97}-\dfrac{1}{100}\right)=\dfrac{0,33x}{2009}\)

\(\Leftrightarrow\dfrac{1}{3}\cdot\dfrac{99}{100}=\dfrac{0,33x}{2009}\)

\(\Leftrightarrow\dfrac{33}{100}=\dfrac{0,33x}{2009}\) <=> x = (tự tính )

17 tháng 4 2018

⇔13(11−14+14−...+197−1100)=0,33x2009⇔13(11−14+14−...+197−1100)=0,33x2009

⇔13⋅99100=0,33x2009⇔13⋅99100=0,33x2009

12 tháng 7 2017

2, a-b=ab => a=ab+b => a=b(a+1)

thay a=b(a+1) vào a:b ta có: => b:b(a+1)=a+1

Theo bài ra ta có: a:b=a-b

=> a+1=a-b

=>-b=1

=> b=-1

Thay b=-1 vào a-b=ab ta có : a-(-1)=-a

=> a +1=-a

=>a=-1/2

Vậy a=-1/2. b=-1

24 tháng 7 2017

\(A=\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}\)

\(A=\left(-1\right)^{2n+n+n+1}\)

\(A=\left(-1\right)^{4n+1}\)

\(B=\left(10000-1^2\right).\left(10000-2^2\right)...\left(10000-1000^2\right)\)

\(B=\left(10000-1^2\right)\left(10000-2^2\right)...\left(10000-100^2\right)...\left(10000-1000^2\right)\)

\(B=\left(10000-1^2\right)\left(10000-2^2\right)...\left(10000-10000\right)...\left(10000-1000^2\right)\)

\(B=\left(10000-1^2\right)\left(10000-2^2\right)...0\left(10000-1000^2\right)\)

\(B=0\)

\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)

\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{5^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)

\(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...0....\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)

\(C=0\)

\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-10^3\right)}\)

\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-1000\right)}\)

\(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...0}\)

\(D=1999^0\)

\(D=1\)

6 tháng 9 2018

A= \(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{99\cdot100}\)

= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

= \(1-\dfrac{1}{100}\)

= \(\dfrac{99}{100}\)

Ta có :

\(\dfrac{7}{12}=\dfrac{7\cdot50}{12\cdot50}=\dfrac{350}{600}\)

\(\dfrac{99}{100}=\dfrac{99\cdot6}{100\cdot6}=\dfrac{594}{600}\)

\(\dfrac{5}{6}=\dfrac{5\cdot100}{6\cdot100}=\dfrac{500}{600}\)

Chỗ này hình như bn viết sai đề nha

QĐMS lên phải là \(\dfrac{7}{12}< \dfrac{5}{6}< A\) chứ

Bn xem lại đề ik nha ☺

THANKSSSSSSSSSSSS

6 tháng 9 2018

Đề mình viết đúng rồi bạn ơi!

a: \(A=6\left(x+\dfrac{1}{3}\right)^2-7>=-7>-8\forall x\)

\(B=-8-\left(3.75-x\right)^2\le-8\)

Do đó: A>B

b: \(A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}=\dfrac{15}{16}\)

\(B=\left(\dfrac{1}{2}\right)^4=\dfrac{1}{16}\)

Do đó: A>B