Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4 : Tìm x biết:
a, 4x2 - 49 = 0
\(\Leftrightarrow\) (2x)2 - 72 = 0
\(\Leftrightarrow\) (2x - 7)(2x + 7) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}2x-7=0\\2x+7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b, x2 + 36 = 12x
\(\Leftrightarrow\) x2 + 36 - 12x = 0
\(\Leftrightarrow\) x2 - 2.x.6 + 62 = 0
\(\Leftrightarrow\) (x - 6)2 = 0
\(\Leftrightarrow\) x = 6
e, (x - 2)2 - 16 = 0
\(\Leftrightarrow\) (x - 2)2 - 42 = 0
\(\Leftrightarrow\) (x - 2 - 4)(x - 2 + 4) = 0
\(\Leftrightarrow\) (x - 6)(x + 2) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)
f, x2 - 5x -14 = 0
\(\Leftrightarrow\) x2 + 2x - 7x -14 = 0
\(\Leftrightarrow\) x(x + 2) - 7(x + 2) = 0
\(\Leftrightarrow\) (x + 2)(x - 7) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=7\end{matrix}\right.\)
a \(=9x^2-6x+1+2012\)
\(=\left(3x-1\right)^2+2012\)
\(=200000^2+2012\)
b: \(=2014^2-2\cdot2014\cdot1014+1014^2\)
\(=\left(2014-1014\right)^2=1000^2=10^6\)
c: \(x^2+3y^2=4xy\)
=>x^2-4xy+3y^2=0
=>(x-y)*(x-3y)=0
=>x=y hoặc x=3y
KHi x=y thì \(C=\dfrac{2x+2013x}{x-2x}=-2015\)
Khi x=3y thì \(C=\dfrac{6y+2013y}{3y-2y}=2019\)
Mk xin lỗi nha, câu c sai đề
c) (x+6)4 + (x+8)4 = 272
Bài 1:
a) \(\left(x+2\right)^2-x^2+4=0\)
\(\Leftrightarrow\left(x+2\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+2-x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+4\right)=0\)
\(\Leftrightarrow x+2=0\) hoặc \(x+4=0\)
\(\Leftrightarrow x=-2\) hoặc \(x=-4\)
b) \(2x^3+\dfrac{3}{2}x^2=0\)
\(\Leftrightarrow x^2\left(2x+\dfrac{3}{2}\right)=0\)
\(\Leftrightarrow x^2=0\) hoặc \(2x+\dfrac{3}{2}=0\)
\(\Leftrightarrow x=0\) hoặc \(x=-\dfrac{3}{4}\)
bài 1
a) (x+2)2-x2+4=0
\(\Leftrightarrow\)x2+4x+4-x2+4=0
\(\Leftrightarrow\)4x+8=0
\(\Leftrightarrow\) 4(x+2)=0
=>x+2=0
\(\Leftrightarrow\)x=-2
vậy x=-2
b) \(2x^3+\dfrac{3}{2}x^2=0\)
\(\Leftrightarrow x^2\left(2x+\dfrac{3}{2}\right)=0\)
=>\(\left[{}\begin{matrix}x^2=0\\2x+\dfrac{3}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\-\dfrac{3}{4}\end{matrix}\right.\)
vậy x=0 hoặc x=-\(\dfrac{3}{4}\)
Bài 1:
\(a,27x^3+27x^2+9x+1\)
\(=\left(3x\right)^3+3.\left(3x\right)^2.1+3.3x.1^2+1^3\)
\(=\left(3x+1\right)^3\)
\(b,x^3+3\sqrt{2}x^2y+6xy^2+2\sqrt{2}y^3\)
\(=x^3+3.x^2.\sqrt{2}y+3.x.\left(\sqrt{2}y\right)^2+\left(\sqrt{2}y\right)^3\)
\(=\left(x+\sqrt{2}y\right)^3\)
Bài 2:
\(a,x^3+9x^2+27x+27=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
\(b,\left(x+1\right)^3-x\left(x-2\right)^2+x-1=0\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3-4x^2+4x+x-1=0\)
\(\Leftrightarrow-x^2+8x=0\)
\(\Leftrightarrow-x\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)
1)
a) = (3x+1)3
b) (x+\(\sqrt{2}\) )3
2)
a)\(x^3+9x^2+27x+27=0\\ \left(x+3\right)^3=0\\ =>x=-3\)
b) Bài cuối bạn tự làm nhé! Mình mắc học bài
# Chúc bạn học tốt !
\(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1>0\Rightarrowđpcm\)
\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(đpcm\right)\)
\(25x^2-20x+7=25x^2-20x+4+3=\left(5x-2\right)^2+3>0\left(đpcm\right)\)
\(9x^2-6xy+2y^2+1=\left(9x^2+6xy+y^2\right)+y^2+1=\left(3x+y\right)^2+y^2+1>0\left(đpcm\right)\)
\(\Leftrightarrow x^2+y^2\ge xy;x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\ge\left|xy\right|\ge xy\Rightarrowđpcm\)
Bài 1:
a:\(\Leftrightarrow x^2-6x+24=0\)
=>(x-3)^2+15=0(loại)
b: \(\Leftrightarrow\left(x-\sqrt{3}\right)^3=0\)
=>x-căn 3=0
=>x=căn 3
\(a)9.x^2=25\)
\(\Leftrightarrow x^2=\dfrac{25}{9}\)
\(\Leftrightarrow x^2=\left(\pm\dfrac{5}{9}\right)^2\)
\(\Leftrightarrow x=\pm\dfrac{5}{9}\)
\(\Leftrightarrow x\in\left\{\dfrac{5}{9};-\dfrac{5}{9}\right\}\)
b, \(x^3-\dfrac{1}{4}x=0\)
⇔ \(x\left(x^2-\dfrac{1}{4}\right)=0\)
⇔ \(x\left(x+\dfrac{1}{2}\right)\left(x-\dfrac{1}{2}\right)=0\)
⇔\(\left[{}\begin{matrix}x=0\\x+\dfrac{1}{2}\\x-\dfrac{1}{2}\end{matrix}\right.=0\) ⇔ \(\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy xϵ \(\left\{0,\pm\dfrac{1}{2}\right\}\)