Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(-45< -16\) nên \(\left(-\dfrac{45}{17}\right)^{15}< \left(\dfrac{-16}{17}\right)^{15}\)
b) Vì \(21< 23\) nên \(\left(-\dfrac{8}{9}\right)^{21}< \left(-\dfrac{8}{9}\right)^{23}\)
c) \(27^{40}=3^{3^{40}}=3^{120}\)
\(64^{60}=8^{2^{60}}=8^{120}\)
Vì \(3< 8\) nên \(3^{120}< 8^{120}\) hay \(27^{40}< 64^{60}\)
con ai kooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
a, \(4^{100}=\left(2^2\right)^{100}=2^{200}< 2^{202}\)
\(\Rightarrow\text{ }4^{100}< 2^{202}\)
b, \(3^0=1< 5^8\)
\(3^0< 5^8\)
c, \(\left(0,6\right)^0=1\)
\(\left(-0,9\right)^6=\left(0,9\right)^6\)
\(\Rightarrow\text{ }\left(0,6\right)^0< \left(-0,9\right)^6\)
d,
e, \(8^{12}=\left(2^3\right)^{12}=2^{36}=2^{16}\cdot2^{20}=2^{16}\cdot\left(2^4\right)^5=2^{16}\cdot16^5\)
\(12^8=\left(2^2\cdot3\right)^8=2^{16}\cdot3^8=2^{16}\cdot\left(3^2\right)^4=2^{16}\cdot9^4\)
Vì \(2^{16}\cdot16^5>2^{16}\cdot9^4\text{ }\Rightarrow\text{ }8^{12}>12^8\)
\(\left(27^{21}-9^{31}-3^{60}\right)\)
\(=\left[\left(3^3\right)^{21}-\left(3^2\right)^{31}-3^{60}\right]\)
\(=\left(3^{63}-3^{62}-3^{60}\right)\)
\(=3^{60}\left(3^3-3^2-3\right)\)
\(=3^{60}.17\)
\(\Rightarrow\left(27^{21}-9^{31}-3^{60}\right)⋮17\)
\(\RightarrowĐPCM\)
\(\left(27^{21}-9^{31}-3^{60}\right)\)
\(=\left(3^3\right)^{21}-\left(3^2\right)^{31}-3^{60}\)
\(=\left(3^{63}-3^{62}-3^{60}\right)\)
\(=3^{60}\left(3^3-3^3-3\right)\)
\(=3^{60}.17\)
\(\Rightarrow\left(27^{21}-9^{31}-3^{60}\right)⋮17\)
Vậy (2721 - 931 - 360 ) \(⋮\)17
tính hả bạn?!?
So sánh