Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Vì \(3^{50}+1\) chia hết cho \(3\)
Mặt khác tích 2 số tự nhiên liên tiếp phải chia hết cho \(3\) (khi một trong \(2\) số chia hết cho \(3\) hoặc chia \(3\) dư \(2\) (khi \(1\) số chia \(3\) dư \(1\) và \(1\) số chia \(3\) dư \(2\)
\(3^{50}+1\) không phải tích của hai số tự nhiên liên tiếp
Ta có:
\(A=1+3+3^2+...+3^{10}+3^{11}\)
\(A=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(A=40+...+3^8.\left(1+3+3^2+3^3\right)\)
\(A=40+...+3^8.40\)
\(A=40.\left(1+...+3^8\right)\)
Vì \(40⋮5\) và \(8\) nên \(40.\left(1+...+3^8\right)⋮5\) và \(8\)
Vậy \(A⋮5\) và \(8\)
_________
Ta có:
\(B=1+5+5^2+...+5^7+5^8\)
\(B=\left(1+5+5^2\right)+...\left(5^6+5^7+5^8\right)\)
\(B=31+...+5^6.\left(1+5+5^2\right)\)
\(B=31+...+5^6.31\)
\(B=31.\left(1+...+5^6\right)\)
Vì \(31⋮31\) nên \(31.\left(1+...+5^6\right)⋮31\)
Vậy \(B⋮31\)
\(#WendyDang\)
Nếu A chia hết cho 2 và 5 => A chia hết cho 10
Ta có: 9 nâng lên lũy thừa lẻ => tận cùng là 9
=> 911 = (.......9) + 1 = (............0)
Vì tận cùng là 0 => chia hết cho 10
Vậy A chia hết cho 2 và 5
\(9^{11}\) = \(31381059609+1=31381059610\)
Vì tận cùng là so 0 nên chia hết cho 2 và 5 giải qua la đại khái như vầy là đc rồi