K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

Để  \(\frac{6n+8}{2n-1}\)tối giản thì \(\frac{11}{2n-1}\)tối giản \(\Leftrightarrow\)ƯC(11,2n-1)=1,-1

\(\Rightarrow\)2n-1 không chia hết 5\(\Rightarrow\)2n-1\(\ne\)11k(k\(\in\)Z, k\(\ne\)0)

\(\Rightarrow\)n\(\ne\)11k+1:2

27 tháng 8 2016

k có yêu cầu thì lm = j

27 tháng 8 2016

1) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\\ =>\frac{5}{x}+\frac{2y}{8}=\frac{1}{8}\)

Từ đây có thể thấy được x=8 

Ta có : 

\(\frac{5}{8}+\frac{y}{4}=\frac{1}{8}\\ =>\frac{y}{4}=-\frac{3}{8}\\ =>y=-\frac{1}{2}\)

2)

a) \(3n+9⋮n-4\\ =>3\left(n-4\right)+21⋮n-4\\ =>21⋮n-4\)

\(=>n-4\in\text{Ư}\left(21\right)=\left\{1;3;7;21;-1;-3;-7;-21\right\}\\ =>n\in\left\{5;7;11;25;3;1;-3;-17\right\}\)

b) \(6n+5⋮2n-1\\ =>6n-1+6⋮2n-1\\ =>6⋮2n-1\\ =>2x-1\in\text{Ư}\left(6\right)=\left\{1;2;3;6;-1;-2;-3;-6\right\}\)

\(=>2x\in\left\{2;3;4;7;0;-1;-2;-5\right\}\\ =>x\in\left\{1;2;0;-1\right\}\)

 

10 tháng 11 2016

\(A=\frac{3\left(n-4\right)+21}{n-4}=3+\frac{21}{n-4}\)

=> n-4 là USC(21) => n-4={-21; -7; -3; -1; 1; 3; 7; 21} Từ đó suy ra n

Bài B cũng tương tự

19 tháng 9 2017

Để : \(A=\frac{6n-5}{n-1}\in Z\) 

Thì 6n - 5 chia hết cho n - 1 

<=> 6n - 6 + 1 chia hết cho n - 1 

=> 6(n - 1) + 1 chia hết cho n - 1 

=>  1 chia hết cho n - 1 

=> n - 1 thuộc Ư(1) = {-1;1}

Vậy n = {0;2} . 

19 tháng 9 2017

Để : \(B=\frac{3n+1}{2n-3}\in Z\)

Thì 3n + 1 chia hết cho 2n - 3 

=> 6n + 2 chia hết cho 2n - 3

=> 6n - 9 + 11 chia hết cho 2n - 3

=> 3(2n - 3) + 11 chia hết cho 2n - 3

=> 11 chia hết cho 2n - 3

=> 2n - 3 thuộc Ư(11) = {-11;-1;1;11}

=> 2n = {-8;2;4;14}

=> n = {-4;1;2;7}

Vậy n = {-4;1;2;7} . 

14 tháng 5 2017

Đề A đạt giá trị nguyên

=> 3n + 9 chia hết cho n - 4

3n - 12 + 12 + 9 chia hết cho n - 4

3.(n - 4) + 2c1 chia hết cho n - 4

=> 21 chia hết cho n - 4

=> n - 4 thuộc Ư(21) = {1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21}

Thay n - 4 vào các giá trị trên như

n - 4 = 1

n - 4 = -1

....... 

Ta tìm được các giá trị : 

n = {5 ; 3 ; 7 ; -1 ; 11 ; -3 ; 25 ; -17}

14 tháng 5 2017

a) Để A thuộc Z           (A nguyên)

=> 3n+9 chia hết cho n-4

hay 3n+9-12+12 chia hết cho n-4                   (-12+12=0)

      3n-12+9+12 chia hết cho n-4

     3n-12+21 chia hết cho n-4

     3(n-4)+21 chia hết cho n-4

Vì 3(n-4) luôn chia hết cho n-4 với mọi n thuộc Z=> 21 chia hết cho n-4

mà Ư(21)={21;1;7;3} nên ta có bảng:

n-421137
n25 (tm)5 (tm)7 (tm)11 (tm)

Vậy n={25;5;7;11} thì A nguyên.

b)

Để B thuộc Z           (B nguyên)

=> 6n+5 chia hết cho 2n-1

hay 6n+5-3+3 chia hết cho 2n-1                   (-3+3=0)

      6n-3+5+3 chia hết cho 2n-1

     6n-3+8 chia hết cho 2n-1

     3(2n-1)+8 chia hết cho 2n-1

Vì 3(2n-1) luôn chia hết cho 2n-1 với mọi n thuộc Z=> 8 chia hết cho 2n-1

mà Ư(8)={8;1;2;4} nên ta có bảng:

2n-18124
n4.5 (ktm)1 (tm)1.5 (ktm)2.5 (ktm)

Vậy, n=1 thì B nguyên.

a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+30n+n+5-6n^2+3n-10n+5\)

\(=24n+10⋮2\)

d: \(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)⋮6\)