Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 7\(x\).(2\(x\) + 10) =0
\(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x\in\) {-5; 0}
b, -9\(x\) : (2\(x\) - 10) = 0
9\(x\) = 0
\(x\) = 0
c, (4 - \(x\)).(\(x\) + 3) = 0
\(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Vậy \(x\in\) {-3; 4}
a. 2020 ( 2x - 4 ) = 0
<=> 2x - 4 = 0
<=> 2x = 4
<=> x = 2
b. ( 3x - 6 ) ( 9x + 10 ) ( 8 - x ) = 0
<=> 3x - 6 = 0 hoặc 9x + 10 = 0 hoặc 8 - x = 0
<=> 3x = 6 hoặc 9x = - 10 hoặc x = 8
<=> x = 2 hoặc x = - 10/9 hoặc x = 8
c. 7x - 2x = 3425
<=> 5x = 3425
<=> x = 685
d. x2 - 7x = 0
<=> x ( x - 7 ) = 0
<=> x = 0 hoặc x - 7 = 0
<=> x = 0 hoặc x = 7
a, 7\(x\).(\(x\) - 10) = 0
\(\left[{}\begin{matrix}7x=0\\x-10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\)
Vậy \(x\in\) {0; 10}
b, 17.(3\(x\) - 6).(2\(x\) - 18) = 0
\(\left[{}\begin{matrix}3x-6=0\\2x-18=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=6\\2x-18=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=6:3\\x=18:2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2\\x=9\end{matrix}\right.\)
a) (x-1).(x+2)=0
=> +)x-1=0=>x=1
+)x+2=0=>x=-2
vậy x thuộc {1;-2)
b) (x+4).(4-x)=0
suy ra: +) x+4=0=>x=-4
+)4-x=0=>x=4
vậy x thuộc {-4;4}
c) (x+4)(-3x+9)=0
suy ra : +) x+4= 0=>x=-4
+)-3x+9=0=>x=3
vậy x thuộc {-4;3)
d) (2x-4)(x+3)=0
suy ra : +) 2x-4=0=>x=2
+)x+3=0=>x=-3
vậy x thuộc {2;-3}
e) (x2-9).(2x+10)=0
suy ra : +) x2-9=0=>x=9/2
+) 2x+10=0=>x=-5
Vậy x thuộc {9/2;-5}
g) (4-x).x2=0
suy ra : +)4-x=0 => x=4
+) x.2=0=> x=0
Vậy x thuộc {4;0}
HT
a, Vì |2x+8| và |3y-9x| đều >= 0
=> |2x+8| + |3y-9x| >= 0
Dấu "=" xảy ra <=> 2x+8=0 và 3y-9x=0 <=> x=-4 và y=-12
Vậy x=-4 và y=-12
Tk mk nha
a, 7\(x\).(2\(x\) + 10) = 0
\(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-10:2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x\in\){-5; 0}
b, - 9\(x\) : (2\(x\) - 10) = 0
- 9\(x\) = 0
\(x\) = 0
c, (4 - \(x\)).(\(x\) + 3) = 0
\(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Vậy \(x\in\) {-3; 4}
d, (\(x\) + 2023).(\(x\) - 2024) = 0
\(\left[{}\begin{matrix}x+2023=0\\x-2024=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-2023\\x=2024\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-2023; 2024}