![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{\text{4x-1}}{8}\)\(\)= Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời. b: Đặt \(x^2-6x-2=a\) Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\) =>(a+2)(a+7)=0 \(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\) =>x(x-6)(x-1)(x-5)=0 hay \(x\in\left\{0;1;6;5\right\}\) c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\) \(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\) \(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\) \(\Leftrightarrow-48x^2=8x-48x^2+18x+3\) =>26x=-3 hay x=-3/26 a: \(\Leftrightarrow-12x-4=8x-2-8-6x\) =>-12x-4=2x-10 =>-14x=-6 hay x=3/7 b: \(\Leftrightarrow3\left(5x-3\right)-2\left(5x-1\right)=-4\) =>15x-9-10x+2=-4 =>5x-7=-4 =>5x=3 hay x=3/5(loại) c: \(\Leftrightarrow x^2-4+3x+3=3+x^2-x-2\) \(\Leftrightarrow x^2+3x-1=x^2-x+1\) =>4x=2 hay x=1/2(nhận) b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\) \(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\) \(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\) =>(7x+10)(x-3)=0 hay \(x\in\left\{-\dfrac{10}{7};3\right\}\) d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\) \(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\) \(\Leftrightarrow26x+91+x^2-9-12x-14=0\) \(\Leftrightarrow x^2+14x+68=0\) hay \(x\in\varnothing\) b: \(=\dfrac{x}{2\left(x-3\right)}+\dfrac{4}{\left(x-3\right)\left(x+3\right)}\) \(=\dfrac{x^2+3x+8}{2\left(x-3\right)\left(x+3\right)}\) c: \(=\dfrac{\left(x+1\right)^2}{\left(x-1\right)^2}\cdot\dfrac{4\left(x-1\right)^2}{2\left(x+1\right)^2}=\dfrac{4}{2}=2\) d: \(=\dfrac{2x+1}{x-2}\cdot\dfrac{-\left(x-2\right)}{2x+1}=-1\) bài này đề bài là chứng minh hay là giải bất phương trình vậy bạn a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\) a: \(\Leftrightarrow4\left(6-x\right)-3x=6\left(2x+3\right)-12\) =>24-4x-3x=12x+18-12 =>12x+6=-7x+24 =>19x=18 =>x=18/19 b: \(\Leftrightarrow-210x-6\left(x-3\right)-15x=30x+10\left(2x+1\right)\) =>-225x-6x+18=30x+20x+10 =>-231x+18-50x-10=0 =>-281x=-8 =>x=8/281 c: \(\Leftrightarrow36-2\left(x+3\right)=-4x+1-x\) =>36-2x-6=-5x+1 =>3x=1+6-36=5-36=-31 =>x=-31/3 d: \(\Leftrightarrow-30\left(x-3\right)+10\left(2x-7\right)=6\left(6-x\right)\) =>-30x+90+20x-70=36-6x =>-10x+20=36-6x =>-4x=16 =>x=-4 a) \(4x-10< 0\\
4x< 10\\
x< \dfrac{10}{4}=\dfrac{5}{2}\) b) \(2x+x+12\ge0\\
3x\ge-12\\
x\ge-\dfrac{12}{3}=-4\) c) \(x-5\ge3-x\\
2x\ge8\\
x\ge4\) d) \(7-3x>9-x\\
-2>2x\\
x< -1\) đ) \(2x-\left(3-5x\right)\le4\left(x+3\right)\\
2x-3+5x\le4x+12\\
3x\le15\\
x\le5\) e) \(3x-6+x< 9-x\\
5x< 15\\
x< 3\) f) \(2t-3+5t\ge4t+12\\
3t\ge15\\
t\ge5\) g) \(3y-2\le2y-3\\
y\le-1\) h) \(3-4x+24+6x\ge x+27+3x\\
0\ge2x\\
0\ge x\) i) \(5-\left(6-x\right)\le4\left(3-2x\right)\\
5-6+x\le12-8x\\
\\
9x\le13\\
x\le\dfrac{13}{9}\) k) \(5\left(2x-3\right)-4\left(5x-7\right)\ge19-2\left(x+11\right)\\
10x-15-20x+28\ge19-2x-22\\
13-10x\ge-2x-3\\
-8x\ge-16\\
x\le\dfrac{-16}{-8}=2\) l) \(\dfrac{2x-5}{3}-\dfrac{3x-1}{2}< \dfrac{3-x}{5}-\dfrac{2x-1}{4}\\
\dfrac{40x-100}{60}-\dfrac{90x-30}{2}< \dfrac{36-12x}{60}-\dfrac{30x-15}{60}\\
\Rightarrow40x-100-90x+30< 36-12x-30x+15\\
130-50x< 51-42x\\
92x< -79\\
x< -\dfrac{79}{92}\) m) \(5x-\dfrac{3-2x}{2}>\dfrac{7x-5}{2}+x\\
\dfrac{10x}{2}-\dfrac{3-2x}{2}>\dfrac{7x-5}{2}+\dfrac{2x}{2}\\
\Rightarrow10x-3+2x>7x-5+2x\\
12x-3>9x-5\\
3x>-2\\
x>-\dfrac{2}{3}\) n) \(\dfrac{7x-2}{3}-2x< 5-\dfrac{x-2}{4}\\
\dfrac{28x-8}{12}-\dfrac{24x}{12}< \dfrac{60}{12}-\dfrac{3x-6}{12}\\
\Rightarrow28x-8-24x< 60-3x+6\\
4x-8< -3x+66\\
7x< 74\\
x< \dfrac{74}{7}\) a) \(4x-10< 0\) \(\Leftrightarrow4x< 10\) \(\Leftrightarrow x< \dfrac{5}{2}\) b) ??? c) \(x-5\ge3-x\) \(\Leftrightarrow2x-5\ge3\) \(\Leftrightarrow2x\ge8\) \(\Leftrightarrow x\ge4\) d) \(7-3x>9-x\) \(\Leftrightarrow7-2x>9\) \(\Leftrightarrow-2x>2\) \(\Leftrightarrow x< -1\) đ) ??? e) \(3x-6+x< 9-x\) \(\Leftrightarrow4x-6< 9-x\) \(\Leftrightarrow5x-6< 9\) \(\Leftrightarrow5x< 15\) \(\Leftrightarrow x< 3\) f) ??? g) ??? h) \(3-4x+24+6x\ge x+27+3x\) \(\Leftrightarrow2x+27\ge4x+27\) \(\Leftrightarrow-2x\ge0\) \(\Leftrightarrow x\le0\) i) \(5-\left(6-x\right)\le4\left(3-2x\right)\) \(\Leftrightarrow5-6+x\le12-8x\) \(\Leftrightarrow x-1\le12-8x\) \(\Leftrightarrow9x-1\le12\) \(\Leftrightarrow9x\le13\) \(\Leftrightarrow x\le\dfrac{13}{9}\) k) \(5\left(2x-3\right)-4\left(5x-7\right)\ge19-2\left(x+11\right)\) \(\Leftrightarrow10x-15-20x+28\ge19-2x-22\) \(\Leftrightarrow-10x+23\ge-3-2x\) \(\Leftrightarrow-8x+13\ge-3\) \(\Leftrightarrow-8x\ge-16\) \(\Leftrightarrow x\ge2\) l) \(\dfrac{2x-5}{3}-\dfrac{3x-1}{2}< \dfrac{3-x}{5}-\dfrac{2x-1}{4}\) \(\Leftrightarrow-\dfrac{5}{6}x-\dfrac{7}{6}< -\dfrac{7}{10}x+\dfrac{17}{20}\) \(\Leftrightarrow-\dfrac{2}{15}x-\dfrac{7}{6}< \dfrac{17}{20}\) \(\Leftrightarrow-\dfrac{2}{15}x< \dfrac{121}{60}\) \(\Leftrightarrow x>-\dfrac{121}{8}\) m, n) làm tương tự: đáp án: m. \(x>-\dfrac{2}{3}\); n. \(x< \dfrac{74}{7}\) 1) điều kiện xác định : \(x\notin\left\{-1;-2;-3;-4\right\}\) ta có : \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}=\dfrac{1}{6}\) \(\Leftrightarrow\dfrac{x^2+7x+12+x^2+5x+4+x^2+3x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\) \(\Leftrightarrow\dfrac{3x^2+15x+18}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\) \(\Leftrightarrow6\left(3x^2+15x+18\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\) \(\Leftrightarrow18\left(x^2+5x+6\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\) \(\Leftrightarrow18\left(x+2\right)\left(x+3\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\) \(\Leftrightarrow18=\left(x+1\right)\left(x+4\right)\) ( vì điều kiện xác định ) \(\Leftrightarrow18=x^2+5x+4\Leftrightarrow x^2+5x-14=0\) \(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\left(tmđk\right)\) vậy \(x=2\) hoặc \(x=-7\) mấy câu kia lm tương tự nha bn a) \(\frac{6-x}{3}-\frac{x}{4}=\frac{3+2x}{2}-1\) \(\frac{4\left(6-x\right)}{12}-\frac{3x}{12}=\frac{3+2x}{2}-\frac{2}{2}\) \(\frac{24-4x-3x}{12}=\frac{3+2x-2}{2}\) \(\frac{24-7x}{12}=\frac{2x+1}{2}\) \(\Rightarrow2\left(24-7x\right)=12\left(2x+1\right)\) \(\Rightarrow48-14x=24x+12\) \(\Rightarrow24x+14x=48-12\) \(\Rightarrow38x=36\) \(\Rightarrow x=\frac{18}{19}\) b) \(-7x-\frac{x-3}{5}-\frac{x}{2}=x+\frac{2x+1}{3}\) \(\frac{-70x}{10}-\frac{2\left(x-3\right)}{10}-\frac{5x}{10}=\frac{3x}{3}+\frac{2x+1}{3}\) \(\frac{-70x-2x+6-5x}{10}=\frac{3x+2x+1}{3}\) \(\frac{-77x+6}{10}=\frac{5x+1}{3}\) \(\Rightarrow3\left(-77x+6\right)=10\left(5x+1\right)\) \(\Leftrightarrow-231x+18=50x+10\) \(\Leftrightarrow50x+231x=18-10\) \(\Leftrightarrow281x=8\) \(\Leftrightarrow x=\frac{8}{281}\) Mấy câu kia tương tự