Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7x^2-5x=0\)
\(\Leftrightarrow x\left(7x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{7}\end{cases}}\)
a) \(\Delta=169-56=113>0\)
\(\hept{\begin{cases}x_1=\frac{13+\sqrt{113}}{14}\\x_2=\frac{13-\sqrt{113}}{14}\end{cases}}\)
b) \(\Delta=25-4.3.60< 0\)
vô nghiệm
Dùng hệ thức Viet để tính nhẩm các nghiệm của phương trình:
a) x2 - 7x + 12 = 0; b) x2 + 7x+ 12 = 0.
a) x2 – 7x + 12 = 0 có a = 1, b = -7, c = 12
nên x1 + x2 = \(-\dfrac{-7}{1}\) = 7 = 3 + 4
x1x2 = \(\dfrac{12}{1}\) = 12 = 3 . 4
Vậy x1 = 3, x2 = 4.
b) x2 + 7x + 12 = 0 có a = 1, b = 7, c = 12
nên x1 + x2 = \(\dfrac{-7}{1}\) = -7 = -3 + (-4)
x1x2 = \(\dfrac{12}{1}\) = 12 = (-3) . (-4)
Vậy x1 = -3, x2 = -4.
a) x2 – 7x + 12 = 0 có a = 1, b = -7, c = 12
nên x1 + x2 = = 7 = 3 + 4
x1x2 = = 12 = 3 . 4
Vậy x1 = 3, x2 = 4.
b) x2 + 7x + 12 = 0 có a = 1, b = 7, c = 12
nên x1 + x2 = = -7 = -3 + (-4)
x1x2 = = 12 = (-3) . (-4)
Vậy x1 = -3, x2 = -4.
a) \(x^2-7x-5=0\)
\(\Leftrightarrow x^2-2.x.\frac{7}{2}+\frac{49}{4}-\frac{49}{4}-5=0\)
\(\Leftrightarrow\left(x-\frac{7}{2}\right)^2-\frac{69}{4}=0\)
\(\Leftrightarrow\left(x-\frac{7}{2}-\frac{\sqrt{69}}{2}\right)\left(x-\frac{7}{2}+\frac{\sqrt{69}}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{7}{2}-\frac{\sqrt{69}}{2}=0\\x-\frac{7}{2}+\frac{\sqrt{69}}{2}=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7+\sqrt{69}}{2}\\x=\frac{7-\sqrt{69}}{2}\end{cases}}\)
Vậy tập hợp nghiệm\(S=\left\{\frac{7+\sqrt{69}}{2};\frac{7-\sqrt{69}}{2}\right\}\)
b) \(3x^2-5x-8=0\)
\(\Leftrightarrow3x^2+3x-8x-8=0\)
\(\Leftrightarrow3x\left(x+1\right)-8\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\3x-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{8}{3}\end{cases}}}\)
Vậy tập hợp nghiệm \(S=\left\{-1;\frac{8}{3}\right\}\)
a) \(5x^2-7x-12=0\)
Ta có: \(a=5;b=-7;c=-12\)
\(\Rightarrow\Delta=b^2-4ac=\left(-7\right)^2-4.5.\left(-12\right)=289\)
Vậy phương trình có 2 nghiệm:
\(\left\{{}\begin{matrix}x_1=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-7\right)-\sqrt{289}}{2.5}=-1\\x_2=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-7\right)+\sqrt{289}}{2.5}=2,4\end{matrix}\right.\)