Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,3x^2+7x+2=0`
`<=>3x^2+6x+x+2=0`
`<=>3x(x+2)+x+2=0`
`<=>(x+2)(3x+1)=0`
`<=>x=-2\or\x=-1/3`
d) Ta có: (x-1)(x+2)=70
\(\Leftrightarrow x^2+2x-x-2-70=0\)
\(\Leftrightarrow x^2+x-72=0\)
\(\Leftrightarrow x^2+9x-8x-72=0\)
\(\Leftrightarrow x\left(x+9\right)-8\left(x+9\right)=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+9=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=8\end{matrix}\right.\)
Vậy: S={8;-9}
`a) x^2 + 5x + 6 = 0`
Ptr có: `\Delta = b^2 - 4ac = 5^2 - 4 . 1 . 6 = 1 > 0`
`=>` Ptr có `2` `n_o` pb
`x_1 = [ -b + \sqrt{\Delta} ] / [ 2a ] = [ -5 + \sqrt{1} ] / 2 = -2`
`x_2 = [ -b - \sqrt{\Delta} ] / [ 2a ] = [ -5 - \sqrt{1} ] / 2 = -3`
Vậy `S = { -2 ; -3 }`
_________________________________________________
`b) x^4 + 7x^2 - 8 = 0`
Đặt `x^2 = t` `(t >= 0)`
`=> t^2 + 7t - 8 = 0`
Ptr có: `\Delta = b^2 - 4ac = 7^2 - 4 . 1 . (-8) = 81 > 0`
`=>` Ptr có `2` `n_o` pb
`t_1 = [ -b + \sqrt{\Delta} ] / [ 2a ] = [ -7 + \sqrt{81} ] / 2 = 1` (t/m)
`t_2 = [ -b - \sqrt{\Delta} ] / [ 2a ] = [ -7 - \sqrt{81} ] / 2 = -8` (ko t/m)
`@ t = 1 => x^2 = 1 <=> x = +-1`
Vậy `S = { +-1 }`
\(7x^2-5x=0\)
\(\Leftrightarrow x\left(7x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{7}\end{cases}}\)
a) \(5x^2-7x-12=0\)
Ta có: \(a=5;b=-7;c=-12\)
\(\Rightarrow\Delta=b^2-4ac=\left(-7\right)^2-4.5.\left(-12\right)=289\)
Vậy phương trình có 2 nghiệm:
\(\left\{{}\begin{matrix}x_1=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-7\right)-\sqrt{289}}{2.5}=-1\\x_2=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-7\right)+\sqrt{289}}{2.5}=2,4\end{matrix}\right.\)