Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,6x-4=5x\\ \Leftrightarrow x-4=0\\ \Leftrightarrow x=4\\ b,\dfrac{2x+3}{3}=\dfrac{5-4x}{2}\\ \Leftrightarrow2\left(2x+3\right)=3\left(5-4x\right)\\ \Leftrightarrow4x+6=15-12x\\ \Leftrightarrow16x-9=0\\ \Leftrightarrow x=\dfrac{9}{16}\\ c,\left(x+7\right)\left(x-10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-10=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-7\\x=10\end{matrix}\right.\)
d, ĐKXĐ:\(x\ne\pm3\)
\(\dfrac{2}{x-3}+\dfrac{3}{x+3}=\dfrac{3x+5}{x^2-9}\\ \Leftrightarrow\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{3x+5}{\left(x+3\right)\left(x-3\right)}=0\\ \Leftrightarrow\dfrac{2x+6+3x-9-3x-5}{\left(x+3\right)\left(x-3\right)}=0\\ \Rightarrow2x-8=0\\ \Leftrightarrow x=4\left(tm\right)\)
a.6x-4=5x <=> x=4
b.\(\dfrac{2x+3}{3}=\dfrac{5-4x}{2}\)
\(\Leftrightarrow\dfrac{2\left(2x+3\right)}{6}=\dfrac{3\left(5-4x\right)}{6}\)
\(\Leftrightarrow2\left(2x+3\right)=3\left(5-4x\right)\)
\(\Leftrightarrow4x+6=15-12x\)
\(\Leftrightarrow16x=11\)
\(\Leftrightarrow x=\dfrac{11}{16}\)
c.(x+7)(x-10)=0
\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-10=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=10\end{matrix}\right.\)
d.\(ĐK:x\ne\pm3\)
\(\Rightarrow\dfrac{2}{x-3}+\dfrac{3}{x+3}=\dfrac{3x+5}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\dfrac{2\left(x+3\right)+3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x+5}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow2\left(x+3\right)+3\left(x-3\right)=3x+5\)
\(\Leftrightarrow2x+6+3x-9-3x-5=0\)
\(\Leftrightarrow2x-8=0\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\left(tm\right)\)
c: \(=\dfrac{\left(x-5\right)\left(x+5\right)}{3x+4}\cdot\dfrac{-5}{x-5}=\dfrac{-5\left(x+5\right)}{3x+4}\)
\(a,-5x\left(x-3\right)\left(2x+4\right)-\left(x+3\right)\left(x-3\right)+\left(5x-2\right)\left(3x+4\right)\)
\(=-5x\left(2x^2-x-12\right)-\left(x^2-9\right)+15x^2+20x-6x-8\)
\(=-10x^3+5x^2+60x-x^2+9+15x^2+20x-6x-8\)
\(=-10x^3+19x^2+74x+1\)
\(b,\left(4x-1\right)x\left(3x+1\right)-5x^2.x\left(x-3\right)-\left(x-4\right)x\left(x-5\right)\)\(-7\left(x^3-2x^2+x-1\right)\)
\(=\left(4x^2-x\right)\left(3x+1\right)-5x^4-15x^3-\left(x^2-4x\right)\left(x-5\right)\)\(-7x^3+14x^2-7x+7\)
\(=12x^3+x^2-x-5x^4-15x^3-x^3+9x^2+20x\)\(-7x^3+14x^2-7x+7\)
\(=-5x^4-11x^3+24x^2+12x+7\)
\(c,\left(5x-7\right)\left(x-9\right)-\left(3-x\right)\left(2-5x\right)-2x\left(x-4\right)\)
\(=5x^2-52x+63-6+17x-5x^2-2x^2+8x\)
\(=-2x^2-27x+57\)
\(d,\left(5x-4\right)\left(x+5\right)-\left(x+1\right)\left(x^2-6\right)-5x+19\)
\(=5x^2+21x-20-x^3-x^2+6x+6-5x+19\)
\(=-x^3+4x^2+22x+5\)
\(e,\left(9x^2-5\right)\left(x-3\right)-3x^2\left(3x+9\right)-\left(x-5\right)\left(x+4\right)-9x^3\)
\(=9x^3-27x^2-5x+15-9x^3-27x^2-x^2+x+20-9x^3\)
\(=-9x^3-55x^2+4x+35\)
\(g,\left(x-1\right)^2-\left(x+2\right)^2\)
\(=x^2-2x+1-x^2-4x-4\)
\(=-6x-3\)
a)
<=> 10x - 35 + 16x - 10 = 5
<=> 10x + 16x = 5 + 35 + 10
<=> 26x = 50
<=> x = 50/26 = 25/13
a: Sửa đề: (5-2x)(5+2x)+2x(x+3)=4-2x^2
=>25-4x^2+2x^2+6x=4-2x^2
=>6x+25=4
=>6x=-21
=>x=-7/2
b: (3x-2)(-2x)+5x^2=-x(x-3)
=>-6x^2+4x+5x^2=-x^2+3x
=>4x=3x
=>x=0
c: =>7-(4x^2-9)=x^2+8x+16
=>7-4x^2+9-x^2-8x-16=0
=>-5x^2-8x=0
=>5x^2+8x=0
=>x(5x+8)=0
=>x=0 hoặc x=-8/5
b: Ta có: \(4-\left(x+3\right)\left(x-3\right)+\left(x+7\right)^2\)
\(=4-x^2+9+x^2+14x+49\)
=14x+62
a) \(-5x^2\left(2x^2+x-3\right)=-10x^4-5x^3+15x^2\)
b) \(4-\left(x+3\right)\left(x-3\right)+\left(x+7\right)^2=4-x^2+9+x^2+14x+49=14x+62\)
c) \(\left(x-4\right)\left(x^2-2x+7\right)=x^3-2x^2+7x-4x^2+8x-28=x^3-6x^2+15x-28\)
c. x^2-5x +6 = 0
<=> x^2 - 5x = -6
<=> - 4x = -6
<=> x= -6/-4
Mình chỉ phân tích đa thức thành nhân tử thôi , phần còn lại bạn tự tính nha keo dài lắm
A) 2x2(x+3) - x(x+3) = 0 <=> x(x - 3)(2x-1)=0
B) (2x+5)2 - (x+2)2=0 <=> (x+3)(3x+7)=0
C) (x2-2x) - (3x-6)=0 <=> (x-2)(x-3)=0
D) (2x-7)(2x-7-6x+18)=0 <=> (2x-7)(-4x+11)=0
E) (x-2)(x+1) - (x-2)(x+2)=0 <=> (x-2)*(-1)=0 <=> x-2=0
G) (2x-3)(2x+2-5x)=0 <=> (2x-3)(-3x+2)=0
H) (1-x)(5x+3+3x-7)=0 <=> (1-x)(8x-4)=0
F) (x+6)*3x=0
I) (x-3)(4x-1-5x-2)=0 <=> (x-3)(-x-3)=0
K) (x+4)(5x+8)=0
H) (x+3)(4x-9)=0
Th1: 5x-4>=0<=>x>=\(\frac{4}{5}\)phương trình trở thành: 5x-4=4-5x
<=>10x=8
<=>x=\(\frac{4}{5}\)(TM)
Th2 : 5x-4<0<=>x<\(\frac{4}{5}\)phương trình trở thành
4-5x=4-5x
<=>x=0(TM)
Vậy x=0;x=4,5 là nghiệm của phương trình
\(\orbr{\begin{cases}\hept{\begin{cases}\\\end{cases}}\\\hept{\begin{cases}\\\end{cases}}\end{cases}}\)
\(a)\) \(\left|5x-4\right|=5-5x\)
+) Nếu \(5x-4\ge0\)\(\Rightarrow\)\(5x\ge4\)\(\Rightarrow\)\(x\ge\frac{4}{5}\) ta có :
\(5x-4=4-5x\)
\(\Leftrightarrow\)\(5x+5x=4+4\)
\(\Leftrightarrow\)\(10x=8\)
\(\Leftrightarrow\)\(x=\frac{4}{5}\) ( nhận )
+) Nếu \(5x-4< 0\)\(\Rightarrow\)\(5x< 4\)\(\Rightarrow\)\(x< \frac{4}{5}\) ta có :
\(-\left(5x-4\right)=4-5x\)
\(\Leftrightarrow\)\(-5x+4=4-5x\)
\(\Leftrightarrow\)\(-5x+5x=4-4\)
\(\Leftrightarrow\)\(0=0\) ( nhận )
Vậy \(x=\frac{4}{5}\) hoặc \(x< \frac{4}{5}\)
Chúc bạn học tốt ~